Skip to main content
Log in

First-principles computational study of highly stable and active ternary PtCuNi nanocatalyst for oxygen reduction reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Using density functional theory (DFT) calculations, we rationally designed metallic nanocatalysts with ternary transition metals for oxygen reduction reactions (ORRs) in fuel cell applications. We surrounded binary core—shell nanoparticles with a Pt skin layer. To overcome surface segregation of the core 3-d transition metal, we identified the binary alloy Cu0.76Ni0.24 as having strongly attractive atomic interactions by computationally screening 158 different alloy configurations using energy convex hull theory. The PtskinCu0.76Ni0.24 nanoparticle showed better electrochemical stability than pure Pt nanoparticles ~3 nm in size. We propose that the underlying mechanism originates from favorable compressive strain on Pt for ORR catalysis and atomic interactions among the nanoparticle shells for electrochemical stability. Our results will contribute to accurate identification and innovative design of promising nanomaterials for renewable energy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Stolten, D.; Scherer, V. Transition to Renewable Energy Systems; Wiley-VCH: Weinheim, 2013.

    Book  Google Scholar 

  2. Takahasi, R.; Sugiura, K.; Akiyama, K.; Nonouchi, T.; Hanai, N.; Kiyohara, Y.; Miyata, J.; Okada, O. Optimization of operating condition for CO2 facilitated transport membrane in hydrogen station. ECS Trans. 2015, 65, 175–181.

    Article  Google Scholar 

  3. He, C. Z.; Desai, S.; Brown, G.; Bollepalli, S. PEM fuel cell catalysts: Cost, performance, and durability. Electrochem. Soc. Interface 2005, 14, 41–46.

    Google Scholar 

  4. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  5. Li, H. Y.; Wang, J. S.; Liu, M.; Wang, H.; Su, P. L.; Wu, J. S.; Li, J. A nanoporous oxide interlayer makes a better Pt catalyst on a metallic substrate: Nanoflowers on a nanotube bed. Nano Res. 2014, 7, 1007–1017.

    Article  Google Scholar 

  6. Zheng, F. L.; Wong, W.-T.; Yung, K.-F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

    Article  Google Scholar 

  7. Li, J. Y.; Wang, G. X.; Wang, J.; Miao, S.; Wei, M. M.; Yang, F.; Yu, L.; Bao, X. H. Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Res. 2014, 7, 1519–1527.

    Article  Google Scholar 

  8. Wang, D. L.; Xin, H. L. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

    Article  Google Scholar 

  9. Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

    Article  Google Scholar 

  10. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

    Article  Google Scholar 

  11. Greeley, J.; Stephens, I.; Bondarenko, A.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

    Article  Google Scholar 

  12. Chen, S.; Ferreira, P. J.; Sheng, W. C.; Yabuuchi, N.; Allard, L. F.; Shao-Horn, Y. Enhanced activity for oxygen reduction reaction on “Pt3Co” nanoparticles: Direct evidence of percolated and sandwich-segregation structures. J. Am. Chem. Soc. 2008, 130, 13818–13819.

    Article  Google Scholar 

  13. He, T.; Kreidler, E.; Xiong, L.; Luo, J.; Zhong, C. J. Alloy electrocatalysts: Combinatorial discovery and nanosynthesis. J. Electrochem. Soc. 2006, 153, A1637–A1643.

    Article  Google Scholar 

  14. Cui, C. H.; Gan, L.; Li, H.-H.; Yu, S.-H.; Heggen, M.; Strasser, P. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 2012, 12, 5885–5889.

    Article  Google Scholar 

  15. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Ptbimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

    Article  Google Scholar 

  16. Tang, L.; Han, B.; Persson, K.; Friesen, C.; He, T.; Sieradzki, K.; Ceder, G. Electrochemical stability of nanometer-scale Pt particles in acidic environments. J. Am. Chem. Soc. 2009, 132, 596–600.

    Article  Google Scholar 

  17. Stamenkovic, V. R.; Mun, B. S.; Mayrhofer, K. J.; Ross, P. N.; Markovic, N. M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 2006, 128, 8813–8819.

    Article  Google Scholar 

  18. van der Vliet, D. F.; Wang, C.; Li, D. G.; Paulikas, A. P.; Greeley, J.; Rankin, R. B.; Strmcnik, D.; Tripkovic, D.; Markovic, N. M.; Stamenkovic, V. R. Unique electrochemical adsorption properties of Pt-Skin Surfaces. Angew. Chem. Int. Ed. 2012, 124, 3193–3196.

    Article  Google Scholar 

  19. Han, B. C.; Van der Ven, A.; Ceder, G.; Hwang, B.-J. Surface segregation and ordering of alloy surfaces in the presence of adsorbates. Phys. Rev. B 2005, 72, 205409.

    Article  Google Scholar 

  20. Kang, H. C.; Yan, H. F.; Chu, Y. S.; Lee, S. Y.; Kim, J.; Nazaretski, E.; Kin, C.; Seo, O.; Noh, D. Y.; Macrander, A. T. et al. Oxidation of PtNi nanoparticles studied by a scanning X-ray fluorescence microscope with multi-layer Laue lenses. Nanoscale 2013, 5, 7184–7187.

    Article  Google Scholar 

  21. Pourbaix, M. Atlas of electrochemical equilibria in aqueous solutions; Pergamon Press: Oxford, 1974.

    Google Scholar 

  22. Noh, S. H.; Seo, M. H.; Seo, J. K.; Fischer, P.; Han, B. First principles computational study on the electrochemical stability of Pt–Co nanocatalysts. Nanoscale 2013, 5, 8625–8633.

    Article  Google Scholar 

  23. Balbuena, P.; Callejas-Tovar, R.; Hirunsit, P.; de la Hoz, J. M.; Ma, Y.; Ramírez-Caballero, G. Evolution of Pt and Ptalloy catalytic surfaces under oxygen reduction reaction in acid medium. Top. Catal. 2012, 55, 322–335.

    Article  Google Scholar 

  24. Escaño, M. C. S.; Kasai, H. First-principles study on surface structure, thickness and composition dependence of the stability of Pt-skin/Pt3Co oxygen–reduction-reaction catalysts. J. Power Sources 2014, 247, 562–571.

    Article  Google Scholar 

  25. Srivastava, R.; Mani, P.; Hahn, N.; Strasser, P. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt–Cu–Co nanoparticles. Angew. Chem. Int. Ed. 2007, 119, 9146–9149.

    Article  Google Scholar 

  26. Arumugam, B.; Kakade, B. A.; Tamaki, T.; Arao, M.; Imai, H.; Yamaguchi, T. Enhanced activity and durability for electroreduction of oxygen at chemically ordered intermetallic PtFeCo catalyst. RSC Adv. 2014, 4, 27510–27517.

    Article  Google Scholar 

  27. Mani, P.; Srivastava, R.; Strasser, P. Dealloyed binary PtM3 (M = Cu, Co, Ni) and ternary PtNi3M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells. J. Power Sources 2011, 196, 666–673.

    Article  Google Scholar 

  28. Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 1999, 146, 3750–3756.

    Article  Google Scholar 

  29. Neyerlin, K.; Srivastava, R.; Yu, C. F.; Strasser, P. Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR). J. Power Sources 2009, 186, 261–267.

    Article  Google Scholar 

  30. Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B-Environ. 2005, 56, 9–35.

    Article  Google Scholar 

  31. Escaño, M. C. S. First-principles calculations of the dissolution and coalescence properties of Pt nanoparticle ORR catalysts: The effect of nanoparticle shape. Nano Res. 2015, 8, 1689–1697.

    Article  Google Scholar 

  32. Wu, J. B.; Qi, L.; You, H. J.; Gross, A.; Li, J.; Yang, H. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 2012, 134, 11880–11883.

    Article  Google Scholar 

  33. Ling, T.; Xie, L.; Zhu, J.; Yu, H. M.; Ye, H. Q.; Yu, R.; Cheng, Z. Y.; Liu, L.; Yang, G. W.; Cheng, Z. D. Icosahedral face-centered cubic Fe nanoparticles: Facile synthesis and characterization with aberration-corrected TEM. Nano Lett. 2009, 9, 1572–1576.

    Article  Google Scholar 

  34. Winter, B. J.; Klots, T. D.; Parks, E. K.; Riley, S. J. Chemical identification of icosahedral structure for cobalt and nickel clusters. Z. Phys. D 1991, 19, 375–380.

    Article  Google Scholar 

  35. Cao, X. R.; Fu, Q.; Luo, Y. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst. Phys. Chem. Chem. Phys. 2014, 16, 8367–8375.

    Article  Google Scholar 

  36. Tsai, A.-P.; Inoue, A.; Masumoto, T. New quasicrystals in Al65Cu20M15 (M = Cr, Mn or Fe) systems prepared by rapid solidification. J. Mater. Sci. 1988, 7, 322–326.

    Google Scholar 

  37. Wei, G.-F.; Fang, Y.-H.; Liu, Z.-P. First principles Tafel kinetics for resolving key parameters in optimizing oxygen electrocatalytic reduction catalyst. J. Phys. Chem. C 2012, 116, 12696–12705.

    Article  Google Scholar 

  38. Wei, G.-F.; Liu, Z.-P. Towards active and stable oxygen reduction cathodes: A density functional theory survey on Pt2M skin alloys. Energy Environ. Sci. 2011, 4, 1268–1272.

    Article  Google Scholar 

  39. Wei, G.-F.; Liu, Z.-P. Restructuring and hydrogen evolution on Pt nanoparticle. Chem. Sci. 2015, 6, 1485–1490.

    Article  Google Scholar 

  40. Tsai, H.-C.; Yu, T. H.; Sha, Y.; Merinov, B. V.; Wu, P.-W.; Chen, S.-Y.; Goddard, W. A. Density functional theory study of Pt3M alloy surface segregation with adsorbed O/OH and Pt3Os as catalysts for oxygen reduction reaction. J. Phys. Chem. C 2014, 118, 26703–26712.

    Article  Google Scholar 

  41. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

    Article  Google Scholar 

  42. Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a manyelectron system. Phys. Rev. B 1996, 54, 16533–16539.

    Article  Google Scholar 

  43. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  44. Methfessel, M.; Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621.

    Article  Google Scholar 

  45. Toda, T.; Igarashi, H.; Watanabe, M. Enhancement of the electrocatalytic O2 reduction on Pt–Fe alloys. J. Electroanal. Chem. 1999, 460, 258–262.

    Article  Google Scholar 

  46. Han, B. C.; Miranda, C.; Ceder, G. Effect of particle size and surface structure on adsorption of O and OHon platinum nanoparticles: A first-principles study. Phys. Rev. B 2008, 77, 075410.

    Article  Google Scholar 

  47. Noh, S. H.; Kwak, D. H.; Seo, M. H.; Ohsaka, T.; Han, B. First principles study of oxygen reduction reaction mechanisms on N-doped graphene with a transition metal support. Electrochim. Acta 2014, 140, 225–231.

    Google Scholar 

  48. Hammer, B.; Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211–220.

    Article  Google Scholar 

  49. Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 2000, 45, 71–129.

    Google Scholar 

  50. Dubau, L.; Durst, J.; Maillard, F.; Guétaz, L.; Chatenet, M.; André, J.; Rossinot, E. Further insights into the durability of Pt3Co/C electrocatalysts: Formation of “hollow” Pt nanoparticles induced by the Kirkendall effect. Electrochim. Acta 2011, 56, 10658–10667.

    Article  Google Scholar 

  51. Haynes, W. M. CRC handbook of chemistry and physics; CRC Press: Boca Raton, FL, 2013.

    Google Scholar 

  52. Greeley, J.; Nørskov, J. K. Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from firstprinciples calculations. Electrochim. Acta 2007, 52, 5829–5836.

    Article  Google Scholar 

  53. Bligaard, T.; Nørskov, J. K. Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim. Acta 2007, 52, 5512–5516.

    Article  Google Scholar 

  54. Kaminskii, P.; Kuznetsov, V. Features of alloy formation in Cu-Al and Ni-Cu systems. Sov. Phys. J. 1987, 30, 299–302.

    Article  Google Scholar 

  55. Vitos, L.; Ruban, A. V.; Skriver, H. L.; Kollár, J. The surface energy of metals. Surf. Sci. 1998, 411, 186–202.

    Article  Google Scholar 

  56. Hansen, H. A.; Rossmeisl, J.; Nørskov, J. K. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys. Chem. Chem. Phys. 2008, 10, 3722–3730.

    Article  Google Scholar 

  57. Liu, L. C.; Samjeské, G.; Takao, S.; Nagasawa, K.; Iwasawa, Y. Fabrication of PtCu and PtNiCu multi-nanorods with enhanced catalytic oxygen reduction activities. J. Power Sources 2014, 253, 1–8.

    Article  Google Scholar 

  58. Cao, X.; Han, Y.; Gao, C. Z.; Xu, Y.; Huang, X. M.; Willander, M.; Wang, N. Highly catalytic active PtNiCu nanochains for hydrogen evolution reaction. Nano Energy 2014, 9, 301–308.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byungchan Han or Takeo Ohsaka.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, S.H., Han, B. & Ohsaka, T. First-principles computational study of highly stable and active ternary PtCuNi nanocatalyst for oxygen reduction reaction. Nano Res. 8, 3394–3403 (2015). https://doi.org/10.1007/s12274-015-0839-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0839-2

Keywords

Navigation