Skip to main content
Log in

Biomimetic gold nanocomplexes for gene knockdown: Will gold deliver dividends for small interfering RNA nanomedicines?

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

RNA interference (RNAi) effectors such as small interfering RNA (siRNA) and micro RNA (miRNA) can selectively downregulate any gene implicated in the pathology of a disease. Therefore, RNAi-based therapies have immense potential for the treatment of a wide range of diseases. However, pharmacokinetic and pharmacodynamic studies have revealed that these therapeutic agents have poor bioactivity due to a number of factors, including insufficient plasma drug levels, short plasma half-lives, renal clearance, and hepatic metabolism. Non-viral delivery may facilitate the clinical application of siRNA-based therapeutics by helping to overcome these barriers. Recently, the potential of gold nanoparticles (AuNPs) as multifunctional carriers for transporting drugs, proteins, and genetic materials has been demonstrated. In this review, some of the key properties of AuNPs relevant to siRNA delivery, such as physical properties and surface chemistry have been described. In addition, the ability of AuNP-based formulation strategies to successfully overcome delivery barriers associated with siRNA, and the potential for this material to translate into safe and effective nanomedicines are critically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kanasty, R.; Dorkin, J. R.; Vegas, A.; Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 2013, 12, 967–977.

    Article  Google Scholar 

  2. Guo, J.; Bourre, L.; Soden, D. M.; O’Sullivan, G. C.; O’Driscoll, C. Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics? Biotechnol. Adv. 2011, 29, 402–417.

    Article  Google Scholar 

  3. Mohseni, M.; Sun, J.; Lau, A.; Curtis, S.; Goldsmith, J.; Fox, V. L.; Wei, C.; Frazier, M.; Samson, O.; Wong, K. K.; Kim, C.; Camargo, F. D. A genetic screen identifies an LKB1- MARK signalling axis controlling the Hippo-YAP pathway. Nat. Cell Biol. 2014, 16, 108–117.

    Article  Google Scholar 

  4. Schramek, D.; Sendoel, A.; Segal, J. P.; Beronja, S.; Heller, E.; Oristian, D.; Reva, B.; Fuchs, E. Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas. Science 2014, 343, 309–313.

    Article  Google Scholar 

  5. Guo, J. F.; Cahill, M. R.; McKenna, S. L.; O'Driscoll, C. M. Biomimetic nanoparticles for siRNA delivery in the treatment of leukaemia. Biotechnol. Adv. 2014, 32, 1396–1409.

    Article  Google Scholar 

  6. Strumberg, D.; Schultheis, B.; Traugott, U.; Vank, C.; Santel, A.; Keil, O.; Giese, K.; Kaufmann, J.; Drevs, J. Phase I clinical development of Atu027, a siRNA formulation targeting PKN3 in patients with advanced solid tumors. Int. J. Clin. Pharmacol. Ther. 2012, 50, 76–78.

    Article  Google Scholar 

  7. Tabernero, J.; Shapiro, G. I.; LoRusso, P. M.; Cervantes, A.; Schwartz, G. K.; Weiss, G. J.; Paz-Ares, L.; Cho, D. C.; Infante, J. R.; Alsina, M. et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 2013, 3, 406–417.

    Article  Google Scholar 

  8. Williford, J. M.; Wu, J.; Ren, Y.; Archang, M. M.; Leong, K. W.; Mao, H. Q. Recent advances in nanoparticle-mediated siRNA delivery. Annu. Rev. Biomed. Eng. 2014, 16, 347–370.

    Article  Google Scholar 

  9. Giacca, M.; Zacchigna, S. Virus-mediated gene delivery for human gene therapy. J. Control. Release 2012, 161, 377–388.

    Article  Google Scholar 

  10. Waehler, R.; Russell, S. J.; Curiel, D. T. Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet. 2007, 8, 573–587.

    Article  Google Scholar 

  11. Ginn, S. L.; Alexander, I. E.; Edelstein, M. L.; Abedi, M. R.; Wixon, J. Gene therapy clinical trials worldwide to 2012- an update. J. Gene. Med. 2013, 15, 65–77.

    Article  Google Scholar 

  12. Cobley, C. M.; Chen, J.; Cho, E. C.; Wang, L. V.; Xia, Y. Gold nanostructures: A class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 2011, 40, 44–56.

    Article  Google Scholar 

  13. Wen, S.; Li, K.; Cai, H.; Chen, Q.; Shen, M.; Huang, Y.; Peng, C.; Hou, W.; Zhu, M.; Zhang, G. et al. Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/ MR imaging applications. Biomaterials 2013, 34, 1570–1580.

    Article  Google Scholar 

  14. Barhate, G.; Gautam, M.; Gairola, S.; Jadhav, S.; Pokharkar, V. Quillaja saponaria extract as mucosal adjuvant with chitosan functionalized gold nanoparticles for mucosal vaccine delivery: Stability and immunoefficiency studies. Int. J. Pharm. 2013, 441, 636–642.

    Article  Google Scholar 

  15. Okuno, T.; Kato, S.; Hatakeyama, Y.; Okajima, J.; Maruyama, S.; Sakamoto, M.; Mori, S.; Kodama, T. Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light. J. Control. Release 2013, 172, 879–884.

    Article  Google Scholar 

  16. Jing, L.; Liang, X.; Deng, Z.; Feng, S.; Li, X.; Huang, M.; Li, C.; Dai, Z. Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials 2014, 35, 5814–5821.

    Article  Google Scholar 

  17. Huang, P.; Pandoli, O.; Wang, X. S.; Wang, Z.; Li, Z. M.; Zhang, C. L.; Chen, F.; Lin, J.; Cui, D. X.; Chen, X. Y. Chiral guanosine 5’-monophosphate-capped gold nanoflowers: Controllable synthesis, characterization, surface-enhanced Raman scattering activity, cellular imaging and photothermal therapy. Nano Res. 2012, 5, 630–639.

    Article  Google Scholar 

  18. Kim, D. W.; Kim, J. H.; Park, M.; Yeom, J. H.; Go, H.; Kim, S.; Han, M. S.; Lee, K.; Bae, J. Modulation of biological processes in the nucleus by delivery of DNA oligonucleotides conjugated with gold nanoparticles. Biomaterials 2011, 32, 2593–2604.

    Article  Google Scholar 

  19. Bao, Q. Y.; Geng, D. D.; Xue, J. W.; Zhou, G.; Gu, S. Y.; Ding, Y.; Zhang, C. Glutathione-mediated drug release from Tiopronin-conjugated gold nanoparticles for acute liver injury therapy. Int. J. Pharm. 2013, 446, 112–118.

    Article  Google Scholar 

  20. Ding, Y.; Zhou, Y. Y.; Chen, H.; Geng, D. D.; Wu, D. Y.; Hong, J.; Shen, W. B.; Hang, T. J.; Zhang, C. The performance of thiol-terminated PEG-paclitaxel-conjugated gold nanoparticles. Biomaterials 2013, 34, 10217–10227.

    Article  Google Scholar 

  21. Monem, A. S.; Elbialy, N.; Mohamed, N. Mesoporous silica coated gold nanorods loaded doxorubicin for combined chemophotothermal therapy. Int. J. Pharm. 2014, 470, 1–7.

    Article  Google Scholar 

  22. Bao, C.; Conde, J.; Polo, E.; del Pino, P.; Moros, M.; Baptista, P. V.; Grazu, V.; Cui, D.; de la Fuente, J. M. A promising road with challenges: Where are gold nanoparticles in translational research? Nanomedicine (Lond) 2014, 9, 2353–2570.

    Article  Google Scholar 

  23. Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

    Article  Google Scholar 

  24. Link, S.; EI-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212–4217.

    Article  Google Scholar 

  25. Sperling, R. A.; Rivera Gil, P.; Zhang, F.; Zanella, M.; Parak, W. J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1896–1908.

    Article  Google Scholar 

  26. Huang, X.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2007, 2, 681–693.

    Article  Google Scholar 

  27. Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779.

    Article  Google Scholar 

  28. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.

    Article  Google Scholar 

  29. Orendorff, C. J.; Sau, T. K.; Murphy, C. J. Shape-dependent plasmon-resonant gold nanoparticles. Small 2006, 2, 636–639.

    Article  Google Scholar 

  30. Rahme, K.; Gauffre, F.; Marty, J. D.; Payre, B.; Mingotaud, C. A systematic study of the stabilization in water of gold nanoparticles by poly(ethylene oxide)-poly(propylene oxide)- poly(ethylene oxide) triblock copolymers. J. Phys. Chem. C 2007, 111, 7273–7279.

    Article  Google Scholar 

  31. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

    Article  Google Scholar 

  32. Niu, J.; Zhu, T.; Liu, Z. One-step seed-mediated growth of 30–150 nm quasispherical gold nanoparticles with 2-mercaptosuccinic acid as a new reducing agent. Nanotechnology 2007, 18, 325607.

    Article  Google Scholar 

  33. Perrault, S. D.; Chan, W. C. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J. Am. Chem. Soc. 2009, 131, 17042–17043.

    Article  Google Scholar 

  34. Huang, Y.; Kim, D. H. Synthesis and self-assembly of highly monodispersed quasispherical gold nanoparticles. Langmuir 2011, 27, 13861–13867.

    Article  Google Scholar 

  35. Rahme, K.; Chen, L.; Hobbs, R. G.; Morris, M. A.; O’Driscoll, C.; Holmes, J. D. PEGylated gold nanoparticles: Polymer quantification as a function of PEG lengths and nanoparticle dimensions. RSC Adv. 2013, 3, 6085–6094.

    Article  Google Scholar 

  36. Cai, W.; Gao, T.; Hong, H.; Sun, J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl. 2008, 2008, 17–32.

    Google Scholar 

  37. Li, C. Y.; Fan, F. R.; Yin, B. S.; Chen, L.; Ganguly, T.; Tian, Z. Q. Au+-cetyltrimethylammonium bromide solution: A novel precursor for seed-mediated growth of gold nanoparticles in aqueous solution. Nano Res. 2013, 6, 29–37.

    Article  Google Scholar 

  38. Abdelhalim, M. A. K.; Mady, M. M.; Ghannam, M. M. Physical properties of different gold nanoparticles: Ultravioletvisible and fluorescence measurements. J. Nanomed. Nanotechnol. 2012, 3, 1000133.

    Google Scholar 

  39. Eustis, S.; EI-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217.

    Article  Google Scholar 

  40. Hohenau, A.; Krenn, J. R.; Schider, G.; Ditlbacher, H.; Leitner, A.; Aussenegg, F. R.; Schaich, W. L. Optical nearfield of multipolar plasmons of rod-shaped gold nanoparticles. Europhys. Lett. 2005, 69, 538–543.

    Article  Google Scholar 

  41. Link, S.; EI-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8426.

    Article  Google Scholar 

  42. Sau, T. K.; Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 2004, 126, 8648–8649.

    Article  Google Scholar 

  43. Hao, E.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Synthesis and optical properties of “branched” gold nanocrystals. Nano Lett. 2004, 4, 327–330.

    Article  Google Scholar 

  44. Murphy, C. J.; Gole, A. M.; Hunyadi, S. E.; Orendorff, C. J. One-dimensional colloidal gold and silver nanostructures. Inorg. Chem. 2006, 45, 7544–7554.

    Article  Google Scholar 

  45. Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coordin. Chem. Rev. 2005, 249, 1870–1901.

    Article  Google Scholar 

  46. Jiang, X. C.; Brioude, A.; Pileni, M. P. Gold nanorods: Limitations on their synthesis and optical properties. Colloid Surf. A-Physicochem. Eng. Asp. 2006, 277, 201–206.

    Article  Google Scholar 

  47. Link, S.; Mohamed, M. B.; EI-Sayed, M. A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 1999, 103, 3073–3077.

    Article  Google Scholar 

  48. Liang, Z.; Li, X.; Xie, Y.; Liu, S. ‘Smart’gold nanoshells for combined cancer chemotherapy and hyperthermia. Biomed. Mater. 2014, 9, 025012.

    Article  Google Scholar 

  49. Xia, Y.; Li, W.; Cobley, C. M.; Chen, J.; Xia, X.; Zhang, Q.; Yang, M.; Cho, E. C.; Brown, P. K. Gold nanocages: From synthesis to theranostic applications. Acc. Chem. Res. 2011, 44, 914–924.

    Article  Google Scholar 

  50. Dreaden, E. C.; Mackey, M. A.; Huang, X.; Kang, B.; EI-Sayed, M. A. Beating cancer in multiple ways using nanogold. Chem. Soc. Rev. 2011, 40, 3391–3404.

    Article  Google Scholar 

  51. Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325–337.

    Article  Google Scholar 

  52. Goettmann, F.; Moores, A.; Boissiere, C.; Le Floch, P.; Sanchez, C. A selective chemical sensor based on the plasmonic response of phosphinine-stabilized gold nanoparticles hosted on periodically organized mesoporous silica thin layers. Small 2005, 1, 636–639.

    Article  Google Scholar 

  53. Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Synthesis of nanosized gold-silica core-shell particles. Langmuir 1996, 12, 4329–4335.

    Article  Google Scholar 

  54. Underwood, S.; Mulvaney, P. Effect of the solution refractive index on the color of gold colloids. Langmuir 1994, 10, 3427–3430.

    Article  Google Scholar 

  55. Ung, T.; Liz-Marzan, L. M.; Mulvaney, P. Optical properties of thin films of Au@SiO2 particles. J. Phys. Chem. B 2001, 105, 3441–3452.

    Article  Google Scholar 

  56. Maye, M. M.; Lim, I. I.; Luo, J.; Rab, Z.; Rabinovich, D.; Liu, T.; Zhong, C. J. Mediator-template assembly of nanoparticles. J. Am. Chem. Soc. 2005, 127, 1519–1529.

    Article  Google Scholar 

  57. Kumar, A.; Zhang, X.; Liang, X. J. Gold nanoparticles: Emerging paradigm for targeted drug delivery system. Biotechnol. Adv. 2013, 31, 593–606.

    Article  Google Scholar 

  58. Rana, S.; Bajaj, A.; Mout, R.; Rotello, V. M. Monolayer coated gold nanoparticles for delivery applications. Adv. Drug Deliv. Rev. 2012, 64, 200–216.

    Article  Google Scholar 

  59. Kumar, D.; Saini, N.; Jain, N.; Sareen, R.; Pandit, V. Gold nanoparticles: An era in bionanotechnology. Expert Opin. Drug Deliv. 2013, 10, 397–409.

    Article  Google Scholar 

  60. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phy. Sci. 1973, 241, 20–22.

    Article  Google Scholar 

  61. Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75.

    Article  Google Scholar 

  62. Dumur, F.; Guerlin, A.; Dumas, E.; Bertin, D.; Gigmes, D.; Mayer, C. R. Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents. Gold Bull. 2011, 44, 119–137.

    Article  Google Scholar 

  63. Katti, K.; Chanda, N.; Shukla, R.; Zambre, A.; Suibramanian, T.; Kulkarni, R. R.; Kannan, R.; Katti, K. V. Green nanotechnology from cumin phytochemicals: Generation of biocompatible gold nanoparticles. Int. J. Green Nanotechol. Biomed. 2009, 1, B39–B52.

  64. Ganeshkumar, M.; Ponrasu, T.; Raja, M. D.; Subamekala, M. K.; Suguna, L. Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 130, 64–71.

    Article  Google Scholar 

  65. Iram. Y.; Igbal, M. S.; Athar, M. M.; Saeed, M. Z.; Yasmeen, A.; Ahmad, R. Glucoxylan-mediated green synthesis of gold and silver nanoparticles and their phyto-toxicity study. Carbohydr. Polym. 2014, 104, 29–33.

    Article  Google Scholar 

  66. Menon, D.; Basanth, A.; Retnakumari, A.; Manzoor, K.; Nair, S. V. Green synthesis of biocompatible gold nanocrystals with tunable surface plasmon resonance using garlic phytochemicals. J. Biomed. Nanotechnol. 2012, 8, 901–911.

    Article  Google Scholar 

  67. Mohan Kumar, K.; Mandal, B. K.; Kiran Kumar, H. A.; Maddinedi, S. B. Green synthesis of size controllable gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 116, 539–545.

    Article  Google Scholar 

  68. Correa-Llanten, D. N.; Muñoz-Ibacache, S. A.; Castro, M. E.; Munoz, P. A.; Blamey, J. M. Gold nanoparticles synthesized by geobacillus sp strain ID17 a thermophilic bacterium isolated from deception island, antarctica. Microb. Cell Fact. 2013, 12, 75.

    Article  Google Scholar 

  69. Mittal, A. K.; Chisti, Y.; Banerjee, U. C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013, 31, 346–356.

    Article  Google Scholar 

  70. Rahme, K.; Nolan, M. T.; Doody, T.; McGlacken, G. P.; Morris, M. A.; O’Driscoll, C.; Holmes, J. D. Highly stable PEGylated gold nanoparticles in water: Applications in biology and catalysis. RSC Adv. 2013, 3, 21016–21024.

    Article  Google Scholar 

  71. Guo, J.; Armstrong, M. J.; O’Driscoll, C. M.; Holmes, J. D.; Rahme, K. Positively charged, surfactant-free gold nanoparticles for nucleic acid delivery. RSC Adv. 2015, 5, 17862–17871.

    Article  Google Scholar 

  72. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a twophase liquid-liquid system. J. Chem. Soc., Chem. Commun. 1994, 801–802.

    Google Scholar 

  73. Sardar, R.; Funston, A. M.; Mulvaney, P.; Murray, R. W. Gold nanoparticles: Past, present, and future. Langmuir 2009, 25, 13840–13851.

    Article  Google Scholar 

  74. Lu, W.; Huang, Q.; Ku, G.; Wen, X.; Zhou, M.; Guzatov, D.; Brecht, P.; Su, R.; Oraevsky, A.; Wang, L.V. et al. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 2010, 31, 2617–2626.

    Article  Google Scholar 

  75. Kim, D.; Jeong, Y. Y.; Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CTimaging and therapy of prostate cancer. ACS Nano 2010, 4, 3689–3696.

    Article  Google Scholar 

  76. Jain, N. K.; Nahar, M. PEGylated nanocarriers for systemic delivery. In Cancer Nanotechnology: Methods and Protocols; Grobmyer, S. R.; Moudgil, B. M., Eds.; Springer: New York, 2010; pp 221–234.

    Chapter  Google Scholar 

  77. Amoozgar, Z.; Yeo, Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012, 4, 219–233.

    Article  Google Scholar 

  78. Santos-Martinez, M. J.; Rahme, K.; Corbalan, J. J.; Faulkner, C.; Holmes, J. D.; Tajber, L.; Medina, C.; Radomski, M. W. Pegylation increases platelet biocompatibility of gold nanoparticles. J. Biomed. Nanotechnol. 2014, 10, 1004–1015.

    Article  Google Scholar 

  79. Pooja, D.; Panyaram, S.; Kulhari, H.; Rachamalla, S. S.; Sistla, R. Xanthan gum stabilized gold nanoparticles: Characterization, biocompatibility, stability and cytotoxicity. Carbohydr. Polym. 2014, 110, 1–9.

    Article  Google Scholar 

  80. Latorre, A.; Posch, C.; Garcimartín, Y.; Celli, A.; Sanlorenzo, M.; Vujic, I.; Ma, J.; Zekhtser, M.; Rappersberger, K.; Ortiz-Urda, S. et al. DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics. Nanoscale 2014, 6, 7436–7442.

    Article  Google Scholar 

  81. Imperatore, R.; Carotenuto, G.; Di Grazia, M. A.; Ferrandino, I.; Palomba, L.; Mariotti, R.; Vitale, E.; De Nicola, S.; Longo, A.; Cristino, L. Imidazole-stabilized gold nanoparticles induce neuronal apoptosis: An in vitro and in vivo study. J. Biomed. Mater. Res. A 2015, 103, 1436–1446.

    Article  Google Scholar 

  82. Hinterwirth, H.; Lindner, W.; Lammerhofer, M. Bioconjugation of trypsin onto gold nanoparticles: Effect of surface chemistry on bioactivity. Anal. Chim. Acta 2012, 733, 90–97.

    Article  Google Scholar 

  83. Tao, W.; Ziemer, K. S.; Gill, H. S. Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine (Lond) 2014, 9, 237–251.

    Article  Google Scholar 

  84. Ling, D.; Hackett, M. J.; Hyeon, T. Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today 2014, 9, 457–477.

    Article  Google Scholar 

  85. Zhang, Z.; Jia, J.; Lai, Y.; Ma, Y.; Weng, J.; Sun, L. Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells. Bioorg. Med. Chem. 2010, 18, 5528–5534.

    Article  Google Scholar 

  86. Choi, C. H.; Alabi, C. A.; Webster, P.; Davis, M. E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl. Acad. Sci. USA 2010, 107, 1235–1240.

    Article  Google Scholar 

  87. Prades, R.; Guerrero, S.; Araya, E.; Molina, C.; Salas, E.; Zurita, E.; Selva, J.; Egea, G.; Lopez-Iglesias, C.; Teixido, M. et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 2012, 33, 7194–7205.

    Article  Google Scholar 

  88. Chang, Y. C.; Yang, C. Y.; Sun, R. L.; Cheng, Y. F.; Kao, W. C.; Yang, P. C. Rapid single cell detection of staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci. Rep. 2013, 3, 1863.

    Google Scholar 

  89. Kumar, S.; Aaron, J.; Sokolov, K. Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat. Protoc. 2008, 3, 314–420.

    Article  Google Scholar 

  90. Shiao, Y. S.; Chiu, H. H.; Wu, P. H.; Huang, Y. F. Aptamerfunctionalized gold nanoparticles as photoresponsive nanoplatform for co-drug delivery. ACS Appl. Matyer. Interfaces 2014, 6, 21832–21841.

    Article  Google Scholar 

  91. Arosio, D.; Chiodo, F.; Reina, J. J.; Marelli, M.; Penades, S.; van Kooyk, Y.; Garcia-Vallejo, J. J.; Bernardi, A. Effective targeting of DC-SIGN by a-fucosylamide functionalized gold nanoparticles. Bioconjug. Chem. 2014, 25, 2244–2251.

    Article  Google Scholar 

  92. Choi, H. S.; Liu, W.; Liu, F.; Nasr, K.; Misra, P.; Bawendi, M. G.; Frangioni, J. V. Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol. 2010, 5, 42–47.

    Article  Google Scholar 

  93. Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K.; Han, M. S.; Mirkin, C. A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006, 312, 1027–1030.

    Article  Google Scholar 

  94. Conde, J.; Larguinho, M.; Cordeiro, A.; Raposo, L. R.; Costa, P. M.; Santos, S.; Diniz, M. S.; Fernandes, A. R.; Baptista, P. V. Gold-nanobeacons for gene therapy: Evaluation of genotoxicity, cell toxicity and proteome profiling analysis. Nanotoxicology 2014, 8, 521–532.

    Article  Google Scholar 

  95. Kim, J. H.; Yeom, J. H.; Ko, J. J.; Han, M. S.; Lee, K.; Na, S. Y.; Bae, J. Effective delivery of anti-miRNA DNA oligonucleotides by functionalized gold nanoparticles. J. Biotechnol. 2011, 155, 287–292.

    Article  Google Scholar 

  96. Crew, E.; Tessel, M. A.; Rahman, S.; Razzak-Jaffar, A.; Mott, D.; Kamundi, M.; Yu, G.; Tchah, N.; Lee, J.; Bellavia, M. et al. MicroRNA conjugated gold nanoparticles and cell transfection. Anal. Chem. 2012, 84, 26–29.

    Article  Google Scholar 

  97. Hao, L.; Patel, P. C.; Alhasan, A. H.; Giljohann, D. A.; Mirkin, C. A. Nucleic acid-gold nanoparticle conjugates as mimics of microRNA. Small 2011, 7, 3158–3162.

    Article  Google Scholar 

  98. Conde, J.; Rosa, J.; de la Fuente, J. M.; Baptisata, P. V. Gold-nanobeacons for simultaneous gene specific silencing and intracellular tracking of the silencing events. Biomaterials 2013, 34, 2516–2523.

    Article  Google Scholar 

  99. Kong, W. H.; Bae, K. H.; Hong, C. A.; Lee, Y.; Hahn, S. K.; Park, T. G. Multimerized siRNA cross-linked by gold nanoparticles. Bioconjug. Chem. 2011, 22, 1962–1969.

    Article  Google Scholar 

  100. Giljohann, D. A.; Seferos, D. S.; Prigodich, A. E.; Patel, P. C.; Mirkin, C. A. Gene regulation with polyvalent siRNAnanoparticle conjugates. J. Am. Chem. Soc. 2009, 131, 2072–2073.

    Article  Google Scholar 

  101. Lee, J. S.; Green, J. J.; Love, K. T.; Sunshine, J.; Langer, R.; Anderson, D. G. Gold, poly(beta-amino ester) nanoparticles for small interfering RNA delivery. Nano Lett. 2009, 9, 2402–2406.

    Article  Google Scholar 

  102. Patel, P. C.; Hao, L.; Yeung, W. S.; Mirkin, C. A. Duplex end breathing determines serum stability and intracellular potency of siRNA-Au NPs. Mol. Pharm. 2011, 8, 1285–1291.

    Article  Google Scholar 

  103. Son, S.; Nam, J.; Kim, J.; Kim, S.; Kim, W. J. i-motifdriven Au nanomachines in programmed siRNA delivery for gene-silencing and photothermal ablation. ACS Nano 2014, 8, 5574–5584.

    Article  Google Scholar 

  104. Jensen, S. A.; Day, E. S.; Ko, C. H.; Hurley, L. A.; Luciano, J. P.; Kouri, F. M.; Merkel, T. J.; Luthi, A. J.; Patel, P. C.; Cutler, J. I. et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl. Med. 2013, 5, 209ra152.

  105. Zheng, D.; Giljohann, D. A.; Chen, D. L.; Massich, M. D.; Wang, X. Q.; Iordanov, H.; Mirkin, C. A.; Paller, A. S. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc. Natl. Acad. Sci. USA 2012, 109, 11975–11980.

    Article  Google Scholar 

  106. Conde, J.; Tian, F.; Hernandez, Y.; Bao, C.; Cui, D.; Janssen, K. P.; Ibarra, M. R. Baptista, P. V.; Stoeger, T.; de la Fuente, J. M. In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models. Biomaterials 2013, 34, 7744–7753.

    Article  Google Scholar 

  107. Lu, W.; Zhang, G.; Zhang, R.; Flores, L. G. 2nd; Huang, Q.; Gelovani, J. G.; Li, C. Tumor site-specific silencing of NF-κB p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Cancer Res. 2010, 70, 3177–3188.

    Article  Google Scholar 

  108. Ghosh, R.; Singh, L. C.; Shohet, J. M.; Gunaratne, P. H. A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials 2013, 34, 807–816.

    Article  Google Scholar 

  109. Song, W. J.; Du, J. Z.; Sun, T. M.; Zhang, P. Z.; Wang, J. Gold nanoparticles capped with polyethyleneimine for enhanced siRNA delivery. Small 2010, 6, 239–246.

    Article  Google Scholar 

  110. Huang, S.; Deshmukh, H.; Rajagopalan, K. K.; Wang, S. Gold nanoparticles electroporation enhanced polyplex delivery to mammalian cells. Electrophoresis 2014, 35, 1837–1845.

    Article  Google Scholar 

  111. Lee, Y.; Lee, S. H.; Kim, J. S.; Maruyama, A.; Chen, X.; Park, T. G. Controlled synthesis of PEI-coated gold nanoparticles using reductive catechol chemistry for siRNA delivery. J. Control. Release 2011, 155, 3–10.

    Article  Google Scholar 

  112. Kong, W. H.; Bae, K. H.; Jo, S. D.; Kim, J. S.; Park, T. G. Cationic lipid-coated gold nanoparticles as efficient and non-cytotoxic intracellular siRNA delivery vehicles. Pharm. Res. 2012, 29, 362–374.

    Article  Google Scholar 

  113. Lee, S. H.; Bae, K. H.; Kim, S. H.; Lee, K. R.; Park, T. G. Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. Int. J. Pharm. 2008, 364, 94–101.

    Article  Google Scholar 

  114. Kim, S. T.; Chompoosor, A.; Yeh, Y. C.; Agasti, S. S.; Solfiell, D. J.; Rotello, V. M. Dendronized gold nanoparticles for siRNA delivery. Small 2012, 8, 3253–3256.

    Article  Google Scholar 

  115. Mitra, M.; Kandalam, M.; Rangasamy, J.; Shankar, B.; Maheswari, U. K.; Swaminathan, S.; Krishnakumar, S. Novel epithelial cell adhesion molecule antibody conjugated polyethyleneimine-capped gold nanoparticles for enhanced and targeted small interfering RNA delivery to retinoblastoma cells. Mol. Vis. 2013, 19, 1029–1038.

    Google Scholar 

  116. Zhao, E.; Zhao, Z.; Wang, J.; Yang, C.; Chen, C.; Gao, L.; Feng, Q.; Hou, W.; Gao, M.; Zhang, Q. Surface engineering of gold nanoparticles for in vitro siRNA delivery. Nanoscale 2012, 4, 5102–5109.

    Article  Google Scholar 

  117. Guo, S.; Huang, Y.; Jiang, Q.; Sun, Y.; Deng, L.; Liang, Z.; Du, Q.; Xing, J.; Zhao, Y.; Wang, P. C. Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 2010, 4, 5505–5511.

    Article  Google Scholar 

  118. Lee, S. K.; Han, M. S.; Asokan, S.; Tung, C. H. Effective gene silencing by multilayered siRNA-coated gold nanoparticles. Small 2011, 7, 364–370.

    Article  Google Scholar 

  119. Han, L.; Zhao, J.; Zhang, X.; Cao, W.; Hu, X.; Zou, G.; Duan, X.; Liang, X. J. Enhanced siRNA delivery and silencing gold–chitosan nanosystem with surface charge-reversal polymer assembly and good biocompatibility. ACS Nano 2012, 6, 7340–7351.

    Article  Google Scholar 

  120. Elbakry, A.; Zaky, A.; Liebl, R.; Rachel, R.; Goepferich, A.; Breunig, M. Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett. 2009, 9, 2059–2064.

    Article  Google Scholar 

  121. Bonoiu, A. C.; Mahajan, S. D.; Ding, H.; Roy, I.; Yong, K. T.; Kumar, R.; Hu, R.; Bergey, E. J.; Schwartz, S. A.; Prasad, P. N. Nanotechnology approach for drug addiction therapy: Gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proc. Natl. Acad. Sci. USA 2009, 106, 5546–5550.

    Article  Google Scholar 

  122. Bonoiu, A. C.; Bergey, E. J.; Ding, H.; Hu, R.; Kumar, R.; Yong, K. T.; Prasad, P. N.; Mahajan, S.; Picchione, K. E.; Bhattacharjee, A. et al. Gold nanorod-siRNA induces efficient in vivo gene silencing in the rat hippocampus. Nanomedicine (Lond) 2011, 6, 617–630.

    Article  Google Scholar 

  123. Lee, M. Y.; Park, S. J.; Park, K.; Kim, K. S.; Lee, H.; Hahn, S. K. Target-specific gene silencing of layer-by-layer assembled gold-cysteamine/siRNA/PEI/HA nanocomplex. ACS Nano 2011, 5, 6138–6147.

    Article  Google Scholar 

  124. Bishop, C. J.; Tzeng, S. Y.; Green, J. J. Degradable polymercoated gold nanoparticles for co-delivery of DNA and siRNA. Acta Biomater. 2015, 11, 393–403.

    Article  Google Scholar 

  125. Yan, Y.; Bjornmalm, M.; Caruso, F. Assembly of layer-bylayer particles and their interactions with biological systems. Chem. Mater. 2014, 26, 452–460.

    Article  Google Scholar 

  126. Mintzer, M. A.; Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev. 2009, 109, 259–302.

    Article  Google Scholar 

  127. Zhang, Y.; Wang, Z.; Gemeinhart, R. A. Progress in microRNA delivery. J. Control. Release 2013, 172, 962–974.

    Article  Google Scholar 

  128. Guo, J.; Evans, J. C.; O’Driscoll, C. M. Delivering RNAi therapeutics with non-viral technology: A promising strategy for prostate cancer? Trends Mol. Med. 2013, 19, 250–261.

    Article  Google Scholar 

  129. Wilson, R. C.; Doudna, J. A. Molecular mechanisms of RNA interference. Annu. Rev. Biophys. 2013, 42, 217–239.

    Article  Google Scholar 

  130. Fellmann, C.; Lowe, S. W. Stable RNA interference rules for silencing. Nat. Cell Biol. 2014, 16, 10–18.

    Article  Google Scholar 

  131. Guo, J.; Fisher, K. A.; Darcy, R.; Cryan, J. F.; O’ Driscoll, C. Therapeutic targeting in the silent era: Advances in nonviral siRNA delivery. Mol. Biosyst. 2010, 6, 1143–1161.

    Google Scholar 

  132. Chan, E.; Prado, D. E.; Weidhaas, J. B. Cancer microRNAs: From subtype profiling to predictors of response to therapy. Trends Mol. Med. 2011, 17, 235–243.

    Article  Google Scholar 

  133. Leal, J. A.; Feliciano, A.; Lleonart, M. E. Stem cell microRNAs in senescence and immortalization: Novel players in cancer therapy. Med. Res. Rev. 2013, 33, 112–138.

    Article  Google Scholar 

  134. Momi, N.; Kaur, S.; Rachagani, S.; Ganti, A. K.; Batra, S. K. Smoking and microRNA dysregulation: A cancerous combination. Trends Mol. Med. 2014, 20, 36–47.

    Article  Google Scholar 

  135. Haasnoot, J.; Westerhout, E. M.; Berkhout, B. RNA interference against viruses: Strike and counterstrike. Nat. Biotechnol. 2007, 25, 1435–1443.

    Article  Google Scholar 

  136. Lu, P. Y.; Xie, F. Y.; Woodle, M. C. Modulation of angiogenesis with siRNA inhibitors for novel therapeutics. Trends Mol. Med. 2005, 11, 104–113.

    Article  Google Scholar 

  137. Fitzgerald, K. A.; Evans, J. C.; McCarthy, J.; Guo, J.; Prenciple, M.; Kearney, M.; Watson, W. R.; O’ Driscoll C. M. The role of transcription factors in prostate cancer and potential for future RNA interference therapy. Expert Opin. Ther. Thargets 2014, 18, 633–649.

    Article  Google Scholar 

  138. Bennink, J. R.; Palmore, T. N. The promise of siRNAs for the treatment of influenza. Trends Mol. Med. 2004, 10, 571–574.

    Article  Google Scholar 

  139. Whitehead, K. A.; Langer, R.; Anderson, D. G. Knocking down barriers: Advances in siRNA delivery. Nat. Rev. Drug Discov. 2009, 8, 129–138.

    Article  Google Scholar 

  140. Cole, L. E.; Vargo-Gogola, T.; Roeder, R. K. Contrastenhanced X-ray detection of breast microcalcifications in a murine model using targeted gold nanoparticles. ACS Nano 2014, 8, 7486–7496.

    Article  Google Scholar 

  141. Chong, R. H.; Gonzalez-Gonzalez, E.; Lara, M. F.; Speaker, T. J.; Contag, C. H.; Kaspar, R. L.; Coulman, S. A.; Hargest, R.; Birchall, J. C. Gene silencing following siRNA delivery to skin via coated steel microneedles: In vitro and in vivo proof-of-concept. J. Control. Release 2013, 166, 211–219.

    Article  Google Scholar 

  142. Burgess, A.; Hynynen, K. Noninvasive and targeted drug delivery to the brain using focused ultrasound. ACS Chem. Neurosci. 2013, 4, 519–526.

    Article  Google Scholar 

  143. Wang, Y. H.; Chen, S. P.; Liao, A. H.; Yang, Y. C.; Lee, C. R; Wu, C. H.; Wu, P. C.; Liu, T. M.; Wang, C. R.; Li, P. C. Synergistic delivery of gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy. Sci. Rep. 2014, 4, 5685.

    Google Scholar 

  144. Wegscheid, M. L.; Morshed, R. A.; Cheng, Y.; Lesniak, M. S. The art of attraction: Applications of multifunctional magnetic nanomaterials for malignant glioma. Expert Opin. Drug Deliv. 2014, 11, 957–975.

    Article  Google Scholar 

  145. Hyodo, M.; Sakurai, Y.; Akita, H.; Harashima, H. “Programmed packaging” for gene delivery. J. Control. Release 2014, 193, 316–323.

    Article  Google Scholar 

  146. Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Bombelli, F. B.; Dawson, K. A. Physical-chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 2011, 133, 2525–2534.

    Article  Google Scholar 

  147. Salvati, A.; Pitek, A. S.; Monopoli, M. P.; Prapainop, K.; Bombelli, F. B.; Hristov, D. R.; Kelly, P. M.; Aberg, C.; Mahon, E.; Dawson, K. A. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 2013, 8, 137–143.

    Article  Google Scholar 

  148. de Wolf, H. K.; Snel, C. J.; Verbaan, F. J.; Schiffelers, R. M.; Hennink, W. E.; Storm, G. Effect of cationic carriers on the pharmacokinetics and tumor localization of nucleic acids after intravenous administration. Int. J. Pharm. 2007, 331, 167–175.

    Article  Google Scholar 

  149. Cao-Milan, R.; Liz-Marzan, L. M. Gold nanoparticle conjugates: Recent advances toward clinical applications. Expert Opin. Drug Deliv. 2014, 11, 741–752.

    Article  Google Scholar 

  150. Iosin, M.; Toderas, F.; Baldeck, P. L.; Astilean, S. Study of protein-gold nanoparticle conjugates by fluorescence and surface-enhanced Raman scattering. J. Mol. Struct. 2009, 924–926, 196–200.

    Article  Google Scholar 

  151. Pan, B.; Cui, D.; Xu, P.; Li, Q.; Huang, T.; He, R.; Gao, F. Study on interaction between gold nanorod and bovine serum albumin. Colloid Surf. A-Physicochem. Eng. Asp. 2007, 295, 217–222.

    Article  Google Scholar 

  152. Brewer, S. H.; Glomm, W. R.; Johnson, M. C.; Knag, M. K.; Franzen, S. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 2005, 21, 9303–9307.

    Article  Google Scholar 

  153. Alkilany, A. M.; Thompson, L. B.; Boulos, S. P.; Sisco, P. N.; Murphy, C. J. Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev. 2012, 64, 190–199.

    Article  Google Scholar 

  154. Jokerst, J. V.; Lobovkina, T.; Zare, R. N.; Gambhir, S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond) 2011, 6, 715–728.

    Article  Google Scholar 

  155. Guo, J.; Ogier, J. R.; Desgranges, S.; Darcy, R.; O’Driscoll, C. Anisamide-targeted cyclodextrin nanoparticles for siRNA delivery to prostate tumours in mice. Biomaterials 2012, 33, 7775–7784.

    Article  Google Scholar 

  156. Gao, J.; Chen, H.; Yu, Y.; Song, J.; Song, H.; Su, X.; Li, W.; Tong, X.; Qian, W.; Wang, H. et al. Inhibition of hepatocellular carcinoma growth using immunoliposomes for co-delivery of adriamycin and ribonucleotide reductase M2 siRNA. Biomaterials 2013, 34, 10084–10098.

    Article  Google Scholar 

  157. Leus, N. G.; Morselt, H. W.; Zwiers, P. J.; Kowalski, P. S.; Ruiters, M. H.; Molema, G.; Kamps, J. A. VCAM-1 specific PEGylated SAINT-based lipoplexes deliver siRNA to activated endothelium in vivo but do not attenuate target gene expression. Int. J. Pharm. 2014, 469, 121–131.

    Article  Google Scholar 

  158. Koide, H.; Asai, T.; Hatanaka, K.; Akai, S.; Ishii, T.; Kenjo, E.; Ishida, T.; Kiwada, H.; Tsukada, H.; Oku, N. T cellindependent B cell response is responsible for ABC phenomenon induced by repeated injection of PEGylated liposomes. Int. J. Pharm. 2010, 392, 218–223.

    Article  Google Scholar 

  159. Schellekens, H.; Hennink, W. E.; Brinks, V. The immunogenicity of polyethylene glycol: Facts and fiction. Pharm. Res. 2013, 30, 1729–1734.

    Article  Google Scholar 

  160. He, Z.; Liu, J.; Du, L. The unexpected effect of PEGylated gold nanoparticles on the primary function of erythrocytes. Nanoscale 2014, 6, 9017–9024.

    Article  Google Scholar 

  161. Moghimi, S. M.; Hunter, A. C.; Andresen, T. L. Factors controlling nanoparticle pharmacokinetics: An integrated analysis and perspective. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 481–503.

    Article  Google Scholar 

  162. Quail, D. F.; Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437.

    Article  Google Scholar 

  163. Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662–668.

    Article  Google Scholar 

  164. Suresh, D.; Zambre, A.; Chanda, N.; Hoffman, T. J.; Smith, C. J.; Robertson, J. D.; Kannan, R. Bombesin peptide conjugated gold nanocages internalize via clathrin mediated endocytosis. Bioconjug. Chem. 2014, 25, 1565–1579.

    Article  Google Scholar 

  165. Junttila, M. R.; de Sauvage, F. J. Influence of tumour microenvironment heterogeneity on therapeutic response. Nature 2013, 501, 346–354.

    Article  Google Scholar 

  166. Egeblad, M.; Nakasone, E. S.; Werb, Z. Tumors as organs: Complex tissues that interface with the entire organism. Dev. Cell 2010, 18, 884–901.

    Article  Google Scholar 

  167. Ruan, S.; Yuan, M.; Zhang, L.; Hu, G.; Chen, J.; Cun, X.; Zhang, Q.; Yang, Y.; He, Q.; Gao H. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 2015, 37, 425–435.

    Article  Google Scholar 

  168. O’Mahony, A. M.; Godinho, B. M.; Cryan, J. F.; O’Driscoll, C. M. Non-viral nanosystems for gene and small interfering RNA delivery to the central nervous system: Formulating the solution. J. Pharm. Sci. 2013, 102, 3469–3484.

    Article  Google Scholar 

  169. Chen, Y.; Liu, L. Modern methods for delivery of drugs across the blood-brain barrier. Adv. Drug Deliv Rev. 2012, 64, 640–665.

    Article  Google Scholar 

  170. Huang, R.; Ke, W.; Liu, Y.; Jiang, C.; Pei, Y. The use of lactoferrin as a ligand for targeting the polyamidoaminebased gene delivery system to the brain. Biomaterials 2008, 29, 238–246.

    Article  Google Scholar 

  171. Kumar, P.; Wu, H.; McBride, J. L.; Jung, K. E.; Kim, M. H.; Davidson, B. L.; Lee, S. K.; Shankar, P.; Manjunath, N. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007, 448, 39–43.

    Article  Google Scholar 

  172. Chacko, A. M.; Li, C.; Pryma, D. A.; Brem, S.; Coukos, G.; Muzykantov, V. Targeted delivery of antibody-based therapeutic and imaging agents to CNS tumors: Crossing the blood-brain barrier divide. Expert Opin. Drug Deliv. 2013, 10, 907–926.

    Article  Google Scholar 

  173. Allen, T. M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2002, 2, 750–763.

    Article  Google Scholar 

  174. Wang, F.; Shen, Y.; Zhang, W.; Li, M.; Wang, Y.; Zhou, D.; Guo, S. Efficient, dual-stimuli responsive cytosolic gene delivery using a RGD modified disulfide-linked polyethylenimine functionalized gold nanorod. J. Control. Release 2014, 196, 37–51.

    Article  Google Scholar 

  175. Sakurai, Y.; Hatakeyama, H.; Sato, Y.; Akita, H.; Takayama, K.; Kobayashi, S.; Futaki, S.; Harashima, H. Endosomal escape and the knockdown efficiency of liposomal-siRNA by the fusogenic peptide shGALA. Biomaterials 2011, 32, 5733–5742.

    Article  Google Scholar 

  176. Guo, J.; Cheng, W. P.; Gu, J.; Ding, C.; Qu, X.; Yang, Z.; O’Driscoll, C. Systemic delivery of therapeutic small interfering RNA using a pH-triggered amphiphilic poly- L-lysine nanocarrier to suppress prostate cancer growth in mice. Eur. J. Pharm. Sci. 2012, 45, 521–532.

    Article  Google Scholar 

  177. Kwon, Y. J. Before and after endosomal escape: Roles of stimuli-converting siRNA/polymer interactions in determining gene silencing efficiency. Acc. Chem. Res. 2012, 45, 1077–1088.

    Article  Google Scholar 

  178. Koren, E.; Torchilin, V. P. Cell-penetrating peptides: Breaking through to the other side. Trends Mol. Med. 2012, 18, 385–393.

    Article  Google Scholar 

  179. Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Photodetection with active optical antennas. Science 2011, 332, 702–704.

    Article  Google Scholar 

  180. Schmidt, B.; Loeschner, K.; Hadrup, N.; Mortensen, A.; Sloth, J. J.; Koch, C. B.; Larsen, E. H. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry. Anal. Chem. 2011, 83, 2461–2468.

    Article  Google Scholar 

  181. Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M. V. How toxic are gold nanoparticles? The State-of-the-Art. Nano Res. 2015, 8, 1771–1799.

    Article  Google Scholar 

  182. Xue, H. Y.; Liu, S.; Wong, H. L. Nanotoxicity: A key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine (Lond) 2014, 9, 295–312.

    Article  Google Scholar 

  183. Zhang, X. D.; Wu, D.; Shen, X.; Liu, P. X.; Yang, N.; Zhao, B.; Zhang, H.; Sun, Y. M.; Zhang, L. A.; Fan, F. Y. Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int. J. Nanomedicine 2011, 6, 2071–2081.

    Article  Google Scholar 

  184. Sun, Y. N.; Wang, C. D.; Zhang, X. M.; Ren, L.; Tian, X. H. Shape dependence of gold nanoparticles on in vivo acute toxicological effects and biodistribution. J. Nanosci. Nanotechnol. 2011, 11, 1210–1216.

    Article  Google Scholar 

  185. Thakor, A. S.; Luong, R.; Paulmurugan, R.; Lin, F. I.; Kempen, P.; Zavaleta, C.; Chu, P.; Massoud, T. F.; Sinclair, R.; Gambhir, S. S. The fate and toxicity of Raman-active silica-gold nanoparticles in mice. Sci. Transl. Med. 2011, 3, 79ra33.

  186. Simpson, C. A.; Salleng, K. J.; Cliffel, D. E.; Feldheim, D. L. In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles. Nanomedicine 2013, 9, 257–263.

    Article  Google Scholar 

  187. Zhang, X. D.; Wu, H. Y.; Wu, D.; Wang, Y. Y.; Chang, J. H.; Zhai, Z. B.; Meng, A. M. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int. J. Nanomedicine 2010, 5, 771–781.

    Article  Google Scholar 

  188. Abdelhalim, M. A.; Jarrar, B. M. Gold nanoparticles induced cloudy swelling to hydropic degeneration, cytoplasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis in the liver. Lipids Health Dis. 2011, 10, 166.

    Article  Google Scholar 

  189. Chen, H.; Dorrigan, A.; Saad, S.; Hare, D. J.; Cortie, M. B.; Valenzuela, S. M. In vivo study of spherical gold nanoparticles: Inflammatory effects and distribution in mice. PLoS One 2013, 8, e58208.

    Article  Google Scholar 

  190. You, J.; Zhou, J.; Zhou, M.; Liu, Y.; Robertson, J. D.; Liang, D.; Van Pelt, C.; Li, C. Pharmacokinetics, clearance, and biosafety of polyethylene glycol-coated hollow gold nanospheres. Part. Fibre. Toxicol. 2014, 11, 26.

    Article  Google Scholar 

  191. Abdelhalim, M. A.; Jarrar, B. M. The appearance of renal cells cytoplasmic degeneration and nuclear destruction might be an indication of GNPs toxicity. Lipids Health Dis. 2011, 10, 147.

    Article  Google Scholar 

  192. Liu, X.; Huang, N.; Wang, H.; Li, H.; Jin, Q.; Ji, J. The effect of ligand composition on the in vivo fate of multidentate poly(ethylene glycol) modified gold nanoparticles. Biomaterials 2013, 34, 8370–8381.

    Article  Google Scholar 

  193. Chen, J.; Wang, H.; Long, W.; Shen, X.; Wu, D.; Song, S. S.; Sun, Y. M.; Liu, P. X.; Fan, S.; Fan, F. et al. Sex differences in the toxicity of polyethylene glycol-coated gold nanoparticles in mice. Int. J. Nanomedicine 2013, 8, 2409–2419.

    Google Scholar 

  194. Zhang, X. D.; Wu, D.; Shen, X.; Liu, P. X.; Fan, F. Y.; Fan, S. J. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 2012, 33, 4628–4638.

    Article  Google Scholar 

  195. Zhang, X. D.; Wu, D.; Shen, X.; Chen, J.; Sun, Y. M.; Liu, P. X.; Liang, X. J. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 2012, 33, 6408–6419.

    Article  Google Scholar 

  196. De Jong, W. H.; Hagens, W. I.; Krystek, P.; Burger, M. C.; Sips, A. J.; Geertsma, R. E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 2008, 29, 1912–1919.

    Article  Google Scholar 

  197. Keck, C. M.; Muller, R. H. Nanotoxicological classification system (NCS) - a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur. J. Pharm. Biopharm. 2013, 84, 445–448.

    Article  Google Scholar 

  198. Mussen, F.; Salek, S.; Walker, S. A quantitative approach to benefit-risk assessment of medicines—part 1: The development of a new model using multi-criteria decision analysis; part 2: The practical application of a new model. Pharmacoepidemiol. Drug Saf. 2007, Suppl 1, S42–S46.

    Article  Google Scholar 

  199. Kostarelos, K.; Miller, A. D. Synthetic, self-assembly ABCD nanoparticles: A structural paradigm for viable synthetic non-viral vectors. Chem. Soc. Rev. 2005, 34, 970–994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caitriona M. O’Driscoll.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Rahme, K., Fitzgerald, K.A. et al. Biomimetic gold nanocomplexes for gene knockdown: Will gold deliver dividends for small interfering RNA nanomedicines?. Nano Res. 8, 3111–3140 (2015). https://doi.org/10.1007/s12274-015-0829-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0829-4

Keywords

Navigation