Skip to main content
Log in

Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report a hybrid nanogenerator that includes a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) for scavenging mechanical energy. This nanogenerator operates in a hybrid mode using both the triboelectric and electromagnetic induction effects. Under a vibration frequency of 14 Hz, the fabricated TENG can deliver an open-circuit voltage of about 84 V, a short-circuit current of 43 µA, and a maximum power of 1.2 mW (the corresponding power per unit mass and volume are 1.82 mW/g and 3.4 W/m3, respectively) under a loading resistance of 2 MΩ, whereas the fabricated EMG can produce an opencircuit voltage of about 9.9 V, a short-circuit current of 7 mA, and a maximum power of 17.4 mW (the corresponding power per unit mass and volume are 0.53 mW/g and 3.7 W/m3, respectively) under a loading resistance of 2 kΩ. Impedance matching between the TENG and EMG can be achieved using a transformer to decrease the impedance of the TENG. Moreover, the energy produced by the hybrid nanogenerator can be stored in a home-made Li-ion battery. This research represents important progress toward practical applications of vibration energy generation for realizing self-charging power cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, J.; Zhu, G.; Yang, W. Q.; Jing, Q. S.; Bai, P.; Yang, Y.; Hou, T.-C.; Wang, Z. L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094–6099.

    Article  Google Scholar 

  2. Rome, L. C.; Flynn, L.; Goldman, E. M.; Yoo, T. D. Generating electricity while walking with loads. Science 2005, 309, 1725–1728.

    Article  Google Scholar 

  3. Park, K.-I.; Jeong, C. K.; Ryu, J.; Hwang, G.-T.; Lee, K. J. Flexible and large-area nanocomposite generator based on lead zirconate ttanate particles and carbon nanotubes. Adv. Energy Mater. 2013, 3, 1539–1544.

    Article  Google Scholar 

  4. Bai, X. L.; Wen, Y. M.; Yang, J.; Li, P.; Qiu, J.; Zhu, Y. A magnetoelectric energy harvester with the magnetic coupling to enhance the output performance. J. Appl. Phys. 2012, 111, 07A938.

  5. Mitcheson, P. D.; Miao, P.; Stark, B. H.; Yeatman, E. M.; Holmes, A. S.; Green, T. C. MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators A 2004, 115, 523–529.

    Article  Google Scholar 

  6. Wang, L.; Yuan, F. G. Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 2008, 17, 045009.

  7. Yang, W. Q.; Chen, J.; Zhu, G.; Wen, X. N.; Bai, P.; Su, Y. J.; Lin, Y.; Wang, Z. L. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 2013, 6, 880–886.

    Article  Google Scholar 

  8. Tang, W.; Han, C. B.; Zhang, C.; Wang, Z. L. Cover-sheetbased nanogenerator for charging mobile electronics using low-frequency body motion/vibration. Nano Energy 2014, 9, 121–127.

    Article  Google Scholar 

  9. Guo, H. Y.; Leng, Q.; He, X. M.; Wang, M. J.; Chen, J.; Hu, C. G.; Xi, Y. A triboelectric generator based on checker-like interdigital electrodes with a sandwiched PET thin film for harvesting sliding energy in all directions. Adv. Energy Mater. 2015, 5, 1400790.

    Google Scholar 

  10. Zhang, X.-S.; Han, M.-D.; Wang, R.-X.; Zhu, F.-Y.; Li, Z.-H.; Wang, W.; Zhang, H.-X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168–1172.

    Article  Google Scholar 

  11. Guo, H. Y.; Chen, J.; Tian, L.; Leng, Q.; Xi, Y.; Hu, C. G. Airflow-induced triboelectric nanogenerator as a self-powered sensor for detecting humidity and airflow rate. ACS Appl. Mater. Interfaces 2014, 6, 17184–17189.

    Article  Google Scholar 

  12. Wu, Y. C.; Wang, X.; Yang, Y.; Wang, Z. L. Hybrid energy cell for harvesting mechanical energy from one motion using two approaches. Nano Energy 2015, 11, 162–170.

    Article  Google Scholar 

  13. Zhong, X. D.; Yang, Y.; Wang, X.; Wang, Z. L. Rotatingdisk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source. Nano Energy, in press, DOI: 10.1016/j.nanoen.2015.03.012.

  14. Wang, X.; Wang, S. H.; Yang, Y.; Wang, Z. L. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors. ACS Nano 2015, 9, 4553–4562.

    Article  Google Scholar 

  15. Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Yang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, T., Wu, Y. & Yang, Y. Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy. Nano Res. 8, 3272–3280 (2015). https://doi.org/10.1007/s12274-015-0827-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0827-6

Keywords

Navigation