Skip to main content
Log in

Graphene-based thermal modulators

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The quest for materials and devices that are capable of controlling heat flux continues to fuel research on thermal controlling devices. In this letter, using molecular dynamics simulations, we demonstrate that a partially clamped single-layer graphene can serve as a thermal modulator. The mismatch in phonon dispersion between the unclamped and clamped graphene sections results in phonon interface scattering, and the strength of interface scattering is tunable by controlling the clamp-graphene distance via applying the external pressure. Owing to the ultra-thin structure of graphene and its highly sensitive phonon dispersion to external physical interaction, the modulation efficiency—which is defined as the ratio of the highest to lowest heat flux—can reach as high as 150% at a moderate pressure of 50 GPa. This modulation efficiency can be further enhanced by arranging a number of clamps in series along the direction of the heat flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, B. W.; Wang, L.; Casati, G. Thermal diode: Rectification of heat flux. Phys. Rev. Lett. 2004, 93, 184301.

    Article  Google Scholar 

  2. Terraneo, M.; Peyrard, M.; Casati, G. Controlling the energy flow in nonlinear lattices: A model for a thermal rectifier. Phys. Rev. Lett. 2002, 88, 094302.

    Article  Google Scholar 

  3. Chang, C. W.; Okawa, D.; Majumdar, A.; Zettl, A. Solid-state thermal rectifier. Science 2006, 314, 1121–1124.

    Article  Google Scholar 

  4. Tian, H.; Xie, D.; Yang, Y.; Ren, T. L.; Zhang, G.; Wang, Y. F.; Zhou, C. J.; Peng, P. G.; Wang, L. G.; Liu, L. T. A novel solid-state thermal rectifier based on reduced graphene oxide. Sci. Rep. 2012, 2, 523.

    Google Scholar 

  5. Li, N. B.; Ren, J.; Wang, L.; Zhang, G.; Haenggi, P.; Li, B. W. Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 2012, 84, 1045–1066.

    Article  Google Scholar 

  6. Li, B.; Wang, L.; Casati, G. Nagative differential thermal resistance and thermal transistor. Appl. Phys. Lett. 2006, 88, 143501.

    Article  Google Scholar 

  7. Wang, L.; Li, B. W. Thermal memory: A storage of phononic information. Phys. Rev. Lett. 2006, 101, 267203.

    Article  Google Scholar 

  8. Wang, L.; Li, B. W. Thermal logic gates: Computation with phonons. Phys. Rev. Lett. 2007, 99, 177208.

    Article  Google Scholar 

  9. Cahill, D. G.; Ford, W. K.; Goodson, K. E.; Mahan, G. D.; Majumdar, A.; Maris, H. J.; Merlin, R.; Phillpot, S. R. Nanoscale thermal transport. J. Appl. Phys. 2003. 93, 793–818.

    Article  Google Scholar 

  10. Balandin, A. A.; Pokatilov, E. P.; Nika, D. L. Phonon engineering in hetero- and nanostructures. J. Nanoelectron. Optoelectron. 2007, 2, 140–170.

    Article  Google Scholar 

  11. Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 2010, 3, 147–169.

    Article  Google Scholar 

  12. Zhang, G.; Li, B. W. Impacts of doping on thermal and thermoelectric properties of nanomaterials. Nanoscale 2010, 2, 1058–1068.

    Article  Google Scholar 

  13. Cahill, D. G. Extremes of heat conduction-Pushing the boundaries of the thermal conductivity of materials. MRS Bull. 2012, 37, 855–863.

    Article  Google Scholar 

  14. Zhang, G.; Zhang, Y. W. Thermal conductivity of silicon nanowires: From fundamentals to phononic engineering. Phys. Status Solidi RRL. 2013, 7, 754–766.

    Article  Google Scholar 

  15. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nature Mater. 2011, 10, 569–581.

    Article  Google Scholar 

  16. Sadeghi, M. M.; Pettes, M. T.; Shi, L. Thermal transport in graphene. Solid State Commun. 2012, 152, 1321–1330.

    Article  Google Scholar 

  17. Shahil, K. M. F.; Balandin, A. A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Commun. 2012, 152, 1331–1340.

    Article  Google Scholar 

  18. Nika, D. L.; Balandin, A. A. Two-dimensional phonon transport in graphene. J. Phys. Condens. Mat. 2012, 24, 233203.

    Article  Google Scholar 

  19. Yang, N.; Xu, X. F.; Zhang, G.; Li, B. W. Thermal transport in nanostructures. AIP Advances 2012, 2, 041410.

    Article  Google Scholar 

  20. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

    Article  Google Scholar 

  21. Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X. S.; Yao, Z.; Huang, R.; Broido, D. et al. Two-dimensional phonon transport in supported graphene. Science 2010, 328, 213–216.

    Article  Google Scholar 

  22. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

    Article  Google Scholar 

  23. Tersoff, J. Structural properties of sp3-bonded hydrogenated amorphous carbon. Phys. Rev. B 1991, 44, 12039–12042.

    Article  Google Scholar 

  24. Lindsay, L.; Broido, D. A. Optimized tersoff and brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 2010, 81, 205441.

    Article  Google Scholar 

  25. Xu, Z. P.; Buehler, M. J. Nanoengineering heat transfer performance at carbon nanotube interfaces. ACS Nano 2009, 3, 2767–2775.

    Article  Google Scholar 

  26. Nosé, S. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

    Article  Google Scholar 

  27. Yang, N.; Zhang, G.; Li, B. W. Ultralow thermal conductivity of isotope-doped silicon nanowires. Nano Lett. 2008, 8, 276–280.

    Article  Google Scholar 

  28. Ferrier, N.; Markovic, M.; Perriard, Y. Evaluation of an electromechanical clamping system for its integration in a piezoelectric linear motor for the generation of high linear forces. In 15th International Conference on Electrical Machines and Systems (ICEMS), Sapporo, Japan, 2012, pp 1–6.

  29. Kohl, M. Shape memory microactuators; Springer-Verlag Berlin and Heidelberg GmbH & Co. K: Berlin, 2010.

    Google Scholar 

  30. Kim, H.; Najafi, K. An electrically-driven, large-deflection, high-force, micro pistion hydraulic actuator array for large-scale microfluidic systems. In Proceedings of 22nd IEEE International Conference on Micro Electro Mechanical Systems, Sorrento, Italy, 2009, pp 483–486.

  31. Nayak, A. P.; Bhattacharyya, S.; Zhu, J.; Liu, J.; Wu, X.; Pandey, T.; Jin, C. Q.; Singh, A. K.; Akinwande, D.; Lin, J. F. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 2014, 5, 3731.

    Article  Google Scholar 

  32. Guo, Z. X.; Zhang, D.; Gong, X. G. Manipulating thermal conductivity through substrate coupling. Phys. Rev. B 2011, 84, 075470.

    Article  Google Scholar 

  33. Ong, Z. Y.; Pop, E. Effect of substrate modes on thermal transport in supported graphene. Phys. Rev. B 2011, 84, 075471.

    Article  Google Scholar 

  34. Zhang, G.; Zhang, H. S. Thermal conduction and rectification in few-layer graphene Y junctions. Nanoscale 2011, 3, 4604–4607.

    Article  Google Scholar 

  35. Gale, J. D. GULP: A computer program for the symmetry-adapted simulation of solids. J. Chem. Soc., Faraday Trans. 1997, 93, 629–637.

    Article  Google Scholar 

  36. Yu, C. X.; Zhang, G. Impacts of length and geometry deformation on thermal conductivity of graphene nanoribbons. J. Appl. Phys. 2013, 113, 044306.

    Article  Google Scholar 

  37. Xu, Y.; Li, Z. Y.; Duan, W. H. Thermal and thermoelectric properties of graphene. Small 2014, 10, 2182–2199.

    Article  Google Scholar 

  38. Xu, Y.; Chen, X. B.; Gu, B. L.; Duan, W. H. Intrinsic anisotropy of thermal conductance in graphene nanoribbons. Appl. Phys. Lett. 2009, 95, 233116.

    Article  Google Scholar 

  39. Huang, H. Q.; Xu, Y.; Zou, X. L.; Wu, J.; Duan, W. H. Tuning thermal conduction via extended defects in graphene. Phys. Rev. B 2013, 87, 205415.

    Article  Google Scholar 

  40. Liu, X. Q.; Chen, J.; Yu, C. X.; Zhang, G. Comparison of isotopic effects on thermal conductivity of graphene nanoribbons and carbon nanotubes. Appl. Phys. Lett. 2013, 103, 013111.

    Article  Google Scholar 

  41. Chen, X. B.; Tian, F. Y.; Persson, C.; Duan, W. H.; Chen, N. X. Interlayer interactions in graphites. Sci. Rep. 2013, 3, 3046.

    Google Scholar 

  42. Chen, J.; Zhang, G.; Li, B. W. Substrate coupling suppresses size dependence of thermal conductivity in supported graphene. Nanoscale 2013, 5, 532–536.

    Article  Google Scholar 

  43. Cocemasov, A. I.; Nika, D. L.; Balandin, A. A. Phonons in twisted bilayer graphene. Phys. Rev. B 2013, 88, 035428.

    Article  Google Scholar 

  44. Nika, D. L.; Cocemasov, A. I.; Balandin, A. A. Specific heat of twisted bilayer graphene: Engineering phonons by atomic plane rotations. Appl. Phys. Lett. 2014, 105, 031904.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, G. & Zhang, YW. Graphene-based thermal modulators. Nano Res. 8, 2755–2762 (2015). https://doi.org/10.1007/s12274-015-0782-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0782-2

Keywords

Navigation