Skip to main content
Log in

Novel hydrogen storage properties of palladium nanocrystals activated by a pentagonal cyclic twinned structure

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Researchers appear to have neglected a special form of crystallites, pentagonal cyclic twinning, in which an obvious two-dimensional lattice expansion exists leading to novel physical–chemical properties associated with the changes in geometric and electronic structures. Using the storage and release of hydrogen in Pd nanocrystals as a probe, we have found that icosahedral pentagonal cyclic twinned Pd nanocrystals had distinct hydrogen storage properties, due to the two-dimensional lattice expansions, quite different from those of the octahedral single crystalline counterpart. In addition, the two-dimensional lattice expansion in pentagonal cyclic twinned Pd nanocrystals causes a change in electronic structure, which results in novel catalytic properties involving in situ formation of PdH x pentagonal cyclic twinned nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  Google Scholar 

  2. Jia, Y. Y.; Jiang, Y. Q.; Zhang, J. W.; Zhang, L.; Chen, Q. L.; Xie, Z. X.; Zheng, L. S. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy 110 facets. J. Am. Chem. Soc. 2014, 136, 3748–3751.

    Article  Google Scholar 

  3. Zhu, Z.; Guan, Z. C.; Jia, S. S.; Lei, Z. C.; Lin, S. C.; Zhang, H. M.; Ma, Y. L.; Tian, Z. Q.; Yang, C. Y. J. Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing. Angew. Chem. Int. Ed. 2014, 53, 12503–1257.

    Google Scholar 

  4. Deogratias, N.; Ji, M. W.; Zhang, Y.; Liu, J. J.; Zhang, J. T.; Zhu, H. S. Core@shell sub-ten-nanometer noble metal nanoparticles with a controllable thin Pt shell and their catalytic activity towards oxygen reduction. Nano Res. 2015, 8, 271–280.

    Article  Google Scholar 

  5. Li, Y.;Fan, X. B.; Qi, J. J.; Ji, J. Y.; Wang, S. L.; Zhang, G. L.; Zhang, F. B. Palladium nanoparticle–graphene hybrids as active catalysts for the suzuki reaction. Nano Res. 2010, 3, 429–437.

    Article  Google Scholar 

  6. Zhang, J. W.; Hou, C. P.; Huang, H.; Zhang, L.; Jiang, Z. Y.; Chen, G. X.; Jia, Y. Y.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Surfactant-concentration-dependent shape evolution of Au–Pd alloy nanocrystals from rhombic dodecahedron to trisoctahedron and hexoctahedron. Small 2013, 9, 538–544.

    Article  Google Scholar 

  7. Gu, J.;Zhang, Y. W.; Tao, F. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem. Soc. Rev. 2012, 41, 8050–8065.

    Article  Google Scholar 

  8. Zhang, J. W.; Zhang, L.; Jia, Y. Y.; Chen, G. X.; Wang, X.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Synthesis of spatially uniform metal alloys nanocrystals via a diffusion controlled growth strategy: The case of Au-Pd alloy trisoctahedral nanocrystals with tunable composition. Nano Res. 2012, 5, 618–629.

    Article  Google Scholar 

  9. Marks, L. D. Experimental studies of small-particle structures. Rep. Prog. Phys. 1994, 57, 603–649.

    Article  Google Scholar 

  10. Mackay, A. L. A dense non-crystallographic packing of equal spheres. Acta Cryst. 1962, 15, 916–918.

    Article  Google Scholar 

  11. Calvo, F.; Carré, A. Structural transitions and stabilization of palladium nanoparticles upon hydrogenation. Nanotechnology 2006, 17, 1292–1299.

    Article  Google Scholar 

  12. Lim, B.; Wang, J. G.; Camargo, P. H. C.; Cobley, C. M.; Kim, M. J.; Xia, Y. N. Twin-induced growth of palladium–platinum alloy nanocrystals. Angew. Chem. Int. Ed. 2009, 48, 6304–6308.

    Article  Google Scholar 

  13. Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P. D. Platonic gold nanocrystals. Angew. Chem. Int. Ed. 2004, 43, 3673–3677.

    Article  Google Scholar 

  14. Zhang, S. H.; Jiang, Z. Y.; Xie, Z. X.; Xu, X.; Huang, R. B.; Zheng, L. S. Growth of silver nanowires from solutions: A cyclic penta-twinned-crystal growth mechanism. J. Phys. Chem. B 2005, 109, 9416–9421.

    Article  Google Scholar 

  15. Zhou, W.; Wu, J. B.; Yang, H. Highly uniform platinum icosahedra made by hot injection-assisted GRAILS method. Nano Lett. 2013, 13, 2870–284.

    Article  Google Scholar 

  16. Pietrobon, B.; McEachran, M.; Kitaev, V. Synthesis of sizecontrolled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano 2009, 3, 21–26.

    Article  Google Scholar 

  17. Li, C.C.; Sato, R.; Kanehara, M.; Zeng, H. B.; Bando, Y.; Teranishi, T. Controllable polyol synthesis of uniform palladium icosahedra: Effect of twinned structure on deformation of crystalline lattices. Angew. Chem. Int. Ed. 2009, 48, 6883–6887.

    Article  Google Scholar 

  18. Yin, A. X.; Min, X. Q.; Zhu, W.; Wu, H. S.; Zhang, Y. W.; Yan, C. H. Multiply twinned Pt–Pd nanoicosahedrons as highly active electrocatalysts for methanol oxidation. Chem. Commun. 2012, 48, 543–545.

    Article  Google Scholar 

  19. Wu, J.B.; Qi, L.; You, H. J.; Gross, A.; Li, J.; Yang, H. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 2012, 134, 11880–11883.

    Article  Google Scholar 

  20. Zhang, Q. B.; Xie, J. P.; Yu, Y.; Yang, J. H.; Lee J. Y. Tuning the crystallinity of Au nanoparticles. Small 2010, 6, 523–527.

    Article  Google Scholar 

  21. Huang, H. W.; Wang, Y.; Ruditskiy, A.; Peng, H. C.; Zhao, X.; Zhang, L.; Liu, J. Y.; Ye, Z. Z.; Xia, Y. N. Polyol syntheses of palladium decahedra and icosahedra as pure samples by maneuvering the reaction kinetics with additives. ACS Nano 2014, 8, 7041–7050.

    Article  Google Scholar 

  22. Xiong, Y. J.; McLellan, J. M.; Yin, Y. D.; Xia, Y. N. Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angew. Chem. Int. Ed. 2007, 46, 790–794.

    Article  Google Scholar 

  23. Bao, S. X.; Zhang, J. W.; Jiang, Z. Y.; Zhou, X.; Xie, Z. X. Understanding the formation of pentagonal cyclic twinned crystal from the solvent dependent assembly of Au nanocrystals into their colloidal crystals. J. Phys. Chem. Lett. 2013, 4, 3440–3444.

    Article  Google Scholar 

  24. Niu, Z. Q.; Peng, Q.; Gong, M.; Rong, H. P.; Li, Y. D. Oleylamine-mediated shape evolution of palladium nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 6315–6319.

    Article  Google Scholar 

  25. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60–103.

    Article  Google Scholar 

  26. Tang, Y.; Ouyang, M. Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering. Nat. Mater. 2007, 6, 754–759.

    Article  Google Scholar 

  27. Adams, B. D.; Chen, A. C. The role of palladium in a hydrogen economy. Mater. Today 2011, 14, 282–289.

    Article  Google Scholar 

  28. Jiang, K.; Xu, K.; Zou, S. Z.; Cai, W. B. B-Doped Pd catalyst: Boosting room-temperature hydrogen production from formic acid–formate solutions. J. Am. Chem. Soc. 2014, 136, 4861–4864.

    Article  Google Scholar 

  29. Jiang, K.; Zhang, H. X.; K.; Zou, S. Z.; Cai, W. B. Electrocatalysis of formic acid on palladium and platinum surfaces: From fundamental mechanisms to fuel cell applications. Phys. Chem. Chem. Phys. 2014, 16, 20360–20366.

    Article  Google Scholar 

  30. Kobayashi, H.; Yamauchi, M.; Kitagawa, H.; Kubota, Y.; Kato, K.; Takata, M. On the nature of strong hydrogen atom trapping inside Pd nanoparticles. J. Am. Chem. Soc. 2008, 130, 1828–1829.

    Article  Google Scholar 

  31. Senftle, T. P.; Janik, M. J.; van Duin, A. C. T. A ReaxFF investigation of hydride formation in palladium nanoclusters via Monte Carlo and molecular dynamics simulations. J. Phys. Chem. C 2014, 118, 4967–4981.

    Article  Google Scholar 

  32. Sachs, C.; Pundt, A.; Kirchheim, R.; Winter, M.; Reetz, M. T.; Fritsh, D. Solubility of hydrogen in single-sized palladium clusters. Phys. Rev. B 2001, 64, 0751–8.

    Article  Google Scholar 

  33. Li, G.Q.; Kobayashi, H.; Dekura, S.; Ikeda, R.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Matsumura, S.; Kitagawa, H. Shape-dependent hydrogen-storage properties in Pd nanocrystals: Which does hydrogen prefer, octahedron (111) or cube (100)? J. Am. Chem. Soc. 2014, 136, 10222–10225.

    Article  Google Scholar 

  34. Chen, Y. X.; He, B. L.; Huang, T.; Liu, H. F. Controlled synthesis of palladium icosahedra nanocrystals by reducing H2PdCl4 with tetraethylene glycol. Colloids Surf. A 2009, 348, 145–150.

    Article  Google Scholar 

  35. Hong, J. W.; Kim, D.; Lee, Y. W.; Kim, M.; Kang, S. W.; Han, S. W. Atomic-distribution-dependent electrocatalytic activity of Au-Pd bimetallic nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 8876–8880.

    Article  Google Scholar 

  36. Dai, Y.; Mu, X. L.; Tan, Y. M.; Lin, K. Q.; Yang, Z. L.; Zheng, N. F.; Fu, G. Carbon monoxide-assisted synthesis of single-crystalline Pd tetrapod nanocrystals through hydride formation. J. Am. Chem. Soc. 2012, 134, 7073–7080.

    Article  Google Scholar 

  37. Srivastava, S. C.; Newman, L. Mixed-ligand complexes of palladium (II) with bromide and iodide. Inorg. Chem. 1967, 6, 762–765.

    Article  Google Scholar 

  38. Völkl, J.; Alefeld, G. Diffusion of hydrogen in metals. In Hydrogen in Metals I; Alefeld, G.; Völkl J., Eds.; Springer-Verlag: Berlin Heidelberg, 1978; pp 321–348.

  39. Grönbeck, H.; Zhdanov, V. P. Effect of lattice strain on hydrogen diffusion in Pd: A density functional theory study. Phys. Rev. B 2011, 84, 0523–1.

    Article  Google Scholar 

  40. Jose, D.; Jagirdar, B. R. Nature of hydrogen atom trapped inside palladium lattice. Int. J. Hydrogen Energy 2010, 35, 6804–6811.

    Article  Google Scholar 

  41. Phan, T. H.; Schaak, R. E. Polyol synthesis of palladium hydride: Bulk powders vs. nanocrystals. Chem. Commun. 2009, 3026–3028.

    Google Scholar 

  42. Hu, C.Y.; Lin, K. Q.; Wang, X. L.; Liu, S. J.; Yi, J.; Tian, Y.; Wu, B. H.; Chen, G. X.; Yang, H. Y.; Dai, Y. et al. Electrostatic self-assembling formation of Pd superlattice nanowires from surfactant-free ultrathin Pd nanosheets. J. Am. Chem. Soc. 2014, 136, 12856–12859.

    Article  Google Scholar 

  43. Hyotanishi, M.; Isomura, Y.; Yamamoto, H.; Kawasaki, H.; Obora, Y. Surfactant-free synthesis of palladium nanoclusters for their use in catalytic cross-coupling reactions. Chem. Commun. 2011, 47, 5750–5752.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qin Kuang or Zhaoxiong Xie.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Bao, S., Chen, Q. et al. Novel hydrogen storage properties of palladium nanocrystals activated by a pentagonal cyclic twinned structure. Nano Res. 8, 2698–2705 (2015). https://doi.org/10.1007/s12274-015-0776-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0776-0

Keywords

Navigation