Skip to main content
Log in

Concave Cu-Pd bimetallic nanocrystals: Ligand-based Co-reduction and mechanistic study

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The synthesis of highly uniform alloy nanocrystals with a concave feature is desirable for applications in catalysis but is an arduous task. This article proposes an initiative protocol for the fabrication of novel Cu-Pd alloy nanocrystals, wherein the volume of decylamine (DA) in the reaction system was found to greatly influence the formation of different morphologies, including the tetrahedron (TH), concave tetrahedron (CTH), rhombohedral-tetrapod (RTP), and tetrapod (TP). The alloy structure of the products arises from the coordination interaction between the DA and metal ions, which affects the reduction potential of Cu and Pd species, and thus yields co-reduction. Other reaction parameters, such as the type of ligand, amount of reductant, and temperature, were also altered to study the growth mechanism, yielding consistent conclusions in the diffusion-controlled regime. As a catalyst, 48-nm Cu-Pd concave tetrahedral nanocrystals were highly active for the hydrogenation of 3-nitrostyrene and exhibited >99.9% chemoselectivity to C=C instead of -NO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rodriguez, J. A.; Goodman, D. W. The Nature of the Metal- Metal Bond in Bimetallic Surfaces. Science 1992, 257, 897–903.

    Article  Google Scholar 

  2. Chen, A.; Holt-Hindle, P. Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications. Chem. Rev. 2010, 110, 3767–3804.

    Article  Google Scholar 

  3. Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. D. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.

    Article  Google Scholar 

  4. Shen, S. L.; Zhuang, J.; Yang, Y.; Wang, X. Highly monodisperse Cu- and Ag-based bimetallic nanocrystals for the efficient utilization of noble metals in catalysis. Nanoscale 2011, 3, 272–279.

    Article  Google Scholar 

  5. Sugano, Y.; Shiraishi, Y.; Tsukamoto, D.; Ichikawa, S.; Tanaka, S.; Hirai, T. Supported Au–Cu Bimetallic Alloy Nanoparticles: An Aerobic Oxidation Catalyst with Regenerable Activity by Visible-Light Irradiation. Angew. Chem. Int. Ed. 2013, 125, 5403–5407.

    Article  Google Scholar 

  6. Wang, D. S.; Li, Y. D. Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications. Adv. Mater. 2011, 23, 1044–1060.

    Article  Google Scholar 

  7. Son, S. U.; Jang, Y. J.; Park, J.; Na, H. B.; Park, H. M.; Yun, H. J.; Lee, J.; Hyeon, T. Designed Synthesis of Atom- Economical Pd/Ni Bimetallic Nanoparticle-Based Catalysts for Sonogashira Coupling Reactions. J. Am. Chem. Soc. 2004, 126, 5026–5027.

    Article  Google Scholar 

  8. Peng, Z. M.; Yang, H. Synthesis and Oxygen Reduction Electrocatalytic Property of Pt-on-Pd Bimetallic Heteronanostructures. J. Am. Chem. Soc. 2009, 131, 7542–7543.

    Article  Google Scholar 

  9. Dhital, R. N.; Kamonsatikul, C.; Somsook, E.; Bobuatong, K.; Ehara, M.; Karanjit, S.; Sakurai, H. Low-Temperature Carbon–Chlorine Bond Activation by Bimetallic Gold/Palladium Alloy Nanoclusters: An Application to Ullmann Coupling. J. Am. Chem. Soc. 2012, 134, 20250–20253.

    Google Scholar 

  10. Kang, Y. J.; Ye, X. C.; Chen, J.; Cai, Y.; Diaz, R. E.; Adzic, R. R.; Stach, E. A.; Murray, C. B. Design of Pt-Pd Binary Superlattices Exploiting Shape Effects and Synergistic Effects for Oxygen Reduction Reactions. J. Am. Chem. Soc. 2013, 135, 42–45.

    Google Scholar 

  11. Sneed, B. T.; Brodsky, C. N.; Kuo, C.-H.; Lamontagne, L. K.; Jiang, Y.; Wang, Y.; Tao, F.; Huang, W. X.; Tsung, C.-K. Nanoscale-Phase-Separated Pd-Rh Boxes Synthesized via Metal Migration: An Archetype for Studying Lattice Strain and Composition Effects in Electrocatalysis. J. Am. Chem. Soc. 2013, 135, 14691–14700.

    Article  Google Scholar 

  12. Zhang, L.; Zhang, J. W.; Kuang, Q.; Xie, S. F.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Cu2+-Assisted Synthesis of Hexoctahedral Au-Pd Alloy Nanocrystals with High-Index Facets. J. Am. Chem. Soc. 2011, 133, 17114–17117.

    Article  Google Scholar 

  13. Kikhtyanin, O. V.; Rubanov, A. E.; Ayupov, A. B.; Echevsky, G. V. Hydroconversion of Sunflower oil on Pd/SAPO-31 Catalyst. Fuel 2010, 89, 3085–3092.

    Article  Google Scholar 

  14. Nishihata, Y.; Mizuki, J.; Akao, T.; Tanaka, H.; Uenishi, M.; Kimura, M.; Okamoto, T.; Hamada, N. Self-Regeneration of a Pd-Perovskite Catalyst for Automotive Emissions Control. Nature 2002, 418, 164–167.

    Article  Google Scholar 

  15. Kalita, B.; Deka, R. C. Reaction Intermediates of CO Oxidation on Gas Phase Pd4 Clusters: A Density Functional Study. J. Am. Chem. Soc. 2009, 131, 13252–13254.

    Article  Google Scholar 

  16. Adams, B. D.; Chen, A. C. The Role of Palladium in a Hydrogen Economy. Mater. Today 2011, 14, 282–289.

    Article  Google Scholar 

  17. Yamauchi, M.; Abe, R.; Tsukuda, T.; Kato, K.; Takata. M. Highly Selective Ammonia Synthesis from Nitrate with Photocatalytically Generated Hydrogen on CuPd/TiO2. J. Am. Chem. Soc. 2011, 133, 1150–1152.

    Article  Google Scholar 

  18. Shao, M. H.; Shoemaker, K.; Peles, A.; Kaneko, K.; Protsailo, L. Pt Monolayer on Porous Pd-Cu Alloys as Oxygen Reduction Electrocatalysts. J. Am. Chem. Soc. 2010, 132, 9253–9255.

    Article  Google Scholar 

  19. Zhang, F. X.; Miao, S.; Yang, Y. L.; Zhang, X.; Chen, J. X.; Guan, N. J. Size-Dependent Hydrogenation Selectivity of Nitrate on Pd-Cu/TiO2 Catalysts. J. Phys. Chem. C 2008, 112, 7665–7671.

    Article  Google Scholar 

  20. Mazumder, V.; Chi, M. F.; Mankin, M. N.; Liu, Y.; Metin, □.; Sun, D. H.; More, K. L.; Sun, S. H. A Facile Synthesis of MPd (M = Co, Cu]_Nanoparticles and Their Catalysis for Formic Acid Oxidation. Nano Lett. 2012, 12, 1102–1106.

    Article  Google Scholar 

  21. Moon, G. D.; Ko, S.; Min, Y.; Zeng, J.; Xia, Y. N.; Jeong, U. Chemical Transformations of Nanostructured Materials. Nano Today 2011, 6, 186–203.

    Article  Google Scholar 

  22. Goris, B.; Polavarapu, L.; Bals, S.; Tendeloo, G. V.; Liz-Marzán, L. M. Monitoring Galvanic Replacement Through Three-Dimensional Morphological and Chemical Mapping. Nano Lett. 2014, 14, 3220–3226.

    Article  Google Scholar 

  23. Zhang, H.; Jin, M. S.; Liu, H. Y.; Wang, J. G.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Facile Synthesis of Pd-Pt Alloy Nanocages and Their Enhanced Performance for Preferential Oxidation of CO in Excess Hydrogen. ACS Nano 2011, 5, 8212–8222.

    Article  Google Scholar 

  24. Mallin, M. P.; Murphy, C. J. Solution-Phase Synthesis of Sub-10 nm Au-Ag Alloy Nanoparticles. Nano Lett. 2002, 2, 1235–1237.

    Article  Google Scholar 

  25. Zhang, Z. C.; Yang, Y.; Nosheen, F.; Wang, P. P.; Zhang, J. C.; Zhuang, J.; Wang, X. Fine Tuning of the Structure of Pt–Cu Alloy Nanocrystals by Glycine-Mediated Sequential Reduction Kinetics. Small 2013, 9, 3063–3069.

    Article  Google Scholar 

  26. Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-Pot Synthesis of Cubic PtCu3 Nanocages with Enhanced Electrocatalytic Activity for the Methanol Oxidation Reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.

    Article  Google Scholar 

  27. Fu, G. T.; Liu, Z. Y.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Synthesis and Electrocatalytic Activity of Au@Pd Core–Shell Nanothorns for the Oxygen Reduction Reaction. Nano Res. 2014, 7, 1205–1214.

    Article  Google Scholar 

  28. Zhang, Q.; Guo, X.; Liang, Z. X.; Zeng, J. H.; Yang, J.; Liao. S. J. Hybrid PdAg Alloy-Au nanorods: Controlled Growth, Optical Properties and Electrochemical Catalysis. Nano Res. 2013, 6, 571–580.

    Article  Google Scholar 

  29. Mao, J. J.; Liu, Y. X.; Chen, Z.; Wang, D. S.; Li, Y. D. Bimetallic Pd–Cu Nanocrystals and Their Tunable Catalytic Properties. Chem. Commun. 2014, 50, 4588–4591.

    Article  Google Scholar 

  30. Nosheen, F.; Zhang, Z. C.; Xiang, G. L.; Xu, B.; Yang, Y.; Saleem, F.; Xu, X. B.; Zhang, J. C.; Wang, X. Threedimensional Hierarchical Pt-Cu Superstructures. Nano Res. 2015, 8, 832–838

  31. Park, K.-H.; Lee, Y. W.; Kang, S. W.; Han, S. W. A Facile One-Pot Synthesis and Enhanced Formic Acid Oxidation of Monodisperse Pd–Cu Nanocatalysts. Chem. Asian J. 2011, 6, 1515–1519.

    Article  Google Scholar 

  32. Zhang, L.; Hou, F.; Tan, Y. W. Shape-Tailoring of CuPd Nanocrystals for Enhancement of Electro-Catalytic Activity in Oxygen Reduction Reaction. Chem. Commun. 2012, 48, 7152–7154.

    Article  Google Scholar 

  33. Gao, Q.; Ju, Y. M.; An, D.; Gao, M. R.; Cui, C. H.; Liu, J. W.; Cong, H. P.; Yu, S. H. Shape-Controlled Synthesis of Monodisperse PdCu Nanocubes and Their Electrocatalytic Properties. ChemSusChem 2013, 6, 1878–1882.

    Article  Google Scholar 

  34. Mohl, M.; Dobo, D.; Kukovecz, A.; Konya, Z.; Kordas, K.; Wei, J.; Vajtai, R.; Ajayan, P. M. Formation of CuPd and CuPt Bimetallic Nanotubes by GalvanicReplacement Reaction. J. Phys. Chem. C 2011, 115, 9403–9409.

    Article  Google Scholar 

  35. Gao, C. B.; Hu, Y. X.; Wang, M. S.; Chi, M. F.; Yin, Y. D. Fully Alloyed Ag/Au Nanospheres: Combining the Plasmonic Property of Ag with the Stability of Au. J. Am. Chem. Soc. 2014, 136, 7474–7479.

    Article  Google Scholar 

  36. Xia, X. H.; Xie, S. F.; Liu, M. C.; Peng, H.-C.; Lu, N.; Wang, J. G.; Kim, M. J.; Xia, Y. N. On the Role of Surface Diffusion in Determining the Shape or Morphology of Noble-Metal Nanocrystals. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 6669–6673.

    Article  Google Scholar 

  37. Liu, M. C.; Zheng, Y. Q.; Zhang, L.; Guo, L. J.; Xia, Y. N. Transformation of Pd Nanocubes into Octahedra with Controlled Sizes by Maneuvering the Rates of Etching and Regrowth. J. Am. Chem. Soc. 2013, 135, 11752–11755.

    Article  Google Scholar 

  38. Xie, S. F.; Zhang, H.; Lu, N.; Jin, M. S.; Wang, J. G.; Kim, M. J.; Xie, Z. X.; Xia, Y. N. Synthesis of Rhodium Concave Tetrahedrons by Collectively Manipulating the Reduction Kinetics, Facet-Selective Capping, and Surface Diffusion. Nano Lett. 2013, 13, 6262–6268.

    Article  Google Scholar 

  39. Inzelt, G. In Encyclopedia of Electrochemistry; Bard, A. J.; Stratmann, M.; Scholz, F.; Pickett, Ch., Eds.; Wiley-VCH: Weinheim, 2006; Vol. 7, 42–43.

    Google Scholar 

  40. Inzelt, G. In Encyclopedia of Electrochemistry; Bard, A. J.; Stratmann, M.; Scholz, F.; Pickett, Ch., Eds.; Wiley-VCH: Weinheim, 2006; Vol. 7, 511.

    Google Scholar 

  41. Denton, A. R.; Ashcroft, N. W. Vegard’s Law. Phys. Rev. A 1991, 43, 3161–3164.

    Article  Google Scholar 

  42. Langille, M. R.; Personick, M. L.; Zhang, J.; Mirkin, C. A. Defining Rules for the Shape Evolution of Gold Nanoparticles. J. Am. Chem. Soc. 2012, 134, 14542–14554.

    Article  Google Scholar 

  43. Xia, X. H.; Zeng, J.; Oetjen, L. K.; Li, Q. G.; Xia, Y. N. Quantitative Analysis of the Role Played by Poly(vinylpyrrolidone) in Seed-Mediated Growth of Ag Nanocrystals. J. Am. Chem. Soc. 2012, 134, 1793–1801.

    Article  Google Scholar 

  44. Niesz, K.; Grass, M.; Somorjai, G. A. Precise Control of the Pt Nanoparticle Size by Seeded Growth UsingEO13PO30EO13 Triblock Copolymers as Protective Agents. Nano Lett. 2005, 5, 2238–2240.

    Article  Google Scholar 

  45. Zhang, D. Q.; Wang, R. R.; Wen, M. C.; Weng, D.; Cui, X.; Sun, J.; Li, H. X.; Lu, Y. F. Synthesis of Ultralong Copper Nanowires for High-Performance Transparent Electrodes. J. Am. Chem. Soc. 2012, 134, 14283–14286.

    Article  Google Scholar 

  46. Langille, M. R.; Zhang, J.; Mirkin, C. A. Plasmon-Mediated Synthesis of Heterometallic Nanorods and Icosahedra. Angew. Chem. Int. Ed. 2011, 50, 3543–3547.

    Article  Google Scholar 

  47. Ming, T.; Feng, W.; Tang, Q.; Wang, F.; Sun, L. D.; Wang, J. F.; Yan, C. H. Growth of Tetrahexahedral Gold Nanocrystals with High-Index Facets. J. Am. Chem. Soc. 2009, 131, 16350–16351.

    Article  Google Scholar 

  48. Casale, A.; Robertis, A. D.; Stefano, C. D.; Gianguzze, A.; Patanè, G.; Rigano, C.; Sammartano, S. Thermodynamic Parameters for the Formation of Glycine Complexes with Magnesium(II), Calcium(II), Lead(II), Manganese(II), Cobalt(II), Nickel(II), Zinc(II) and Cadmium(II) at Different Temperatures and Ionic Strengths, with Particular Reference to Natural Fluid Conditions. Thermochim. Acta 1995, 255, 109–141.

    Article  Google Scholar 

  49. Xiong, Y. J.; McLellan, J. M.; Chen, J. Y.; Yin, Y. D.; Li, Z. Y.; Xia, Y. N. Kinetically Controlled Synthesis of Triangular and Hexagonal Nanoplates of Palladium and Their SPR/SERS Properties. J. Am. Chem. Soc. 2005, 127, 17118–17127.

    Article  Google Scholar 

  50. Wang, C. Y.; Lin, C. K.; Zhang, L. H.; Quan, Z. W.; Sun, K.; Zhao, B.; Wang, F.; Porter, N.; Wang, Y. X.; Fang, J. Pt3Co Concave Nanocubes: Synthesis, Formation Understanding, and Enhanced Catalytic Activity toward Hydrogenation of Styrene. Chem. Eur. J. 2014, 20, 1753–1759.

    Article  Google Scholar 

  51. Yin, A. X.; Min, X. Q.; Zhu, W.; Liu, W. C.; Zhang, Y. W.; Yan, C. H. Pt-Cu and Pt-Pd-Cu Concave Nanocubes with High-Index Facets and Superior Electrocatalytic Activity. Chem. Eur. J. 2012, 18, 777–782.

    Article  Google Scholar 

  52. Huang, X. Q.; Tang, S. H.; Zhang, H. H.; Zhou, Z. Y.; Zheng, N. F. Controlled Formation of Concave Tetrahedral/ Trigonal Bipyramidal Palladium Nanocrystals. J. Am. Chem. Soc. 2009, 131, 13916–13917.

    Google Scholar 

  53. Dai, Y.; Mu, X. L.; Tan, Y. M.; Lin, K. Q.; Yang, Z. L.; Zheng, N. F.; Fu, G. Carbon Monoxide-Assisted Synthesis of Single-Crystalline Pd Tetrapod Nanocrystals through Hydride Formation. J. Am. Chem. Soc. 2012, 134, 7073–7080.

    Article  Google Scholar 

  54. Chen, Y.-H.; Hung, H.-H.; Huang, M. H. Seed-Mediated Synthesis of Palladium Nanorods and Branched Nanocrystals and Their Use as Recyclable Suzuki Coupling Reaction Catalysts. J. Am. Chem. Soc. 2009, 131, 9114–9121.

    Article  Google Scholar 

  55. Chen, M. S.; Kumar, D.; Yi, C.-W.; Goodman, D. W. The Promotional Effect of Gold in Catalysis by Palladium-Gold. Science 2005, 310, 291–293.

    Article  Google Scholar 

  56. Narayanan R.; El-Sayed M. A. Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution. Nano Lett. 2004, 4, 1343–1348.

    Article  Google Scholar 

  57. Shokouhimehr, M.; Kim, T.; Jun, S. W.; Shin, K.; Jang, Y. J.; Kim, B. H.; Kim, J.; Hyeon, T. Magnetically Separable Carbon Nanocomposite Catalysts for Efficient nitroarene Reduction and Suzuki Reactions. Appl. Catal. A: Gen. 2014, 476, 133–139.

    Article  Google Scholar 

  58. Zeng, J.; Zhang, Q.; Chen, J. Y.; Xia, Y. N. A Comparison Study of the Catalytic Properties of Au-Based Nanocages, Nanoboxes, and Nanoparticles. Nano Lett. 2010, 10, 30–35.

    Article  Google Scholar 

  59. Hong, J. W.; Kim, D.; Lee, Y. W.; Kim, M.; Kang, S. W.; Han, S. W. Atomic-Distribution-Dependent Electrocatalytic Activity of Au-Pd Bimetallic Nanocrystals. Angew. Chem. Int. Ed. 2011, 123, 9038–9042.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taekyung Yu or Jie Zeng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Su, H., Sun, M. et al. Concave Cu-Pd bimetallic nanocrystals: Ligand-based Co-reduction and mechanistic study. Nano Res. 8, 2415–2430 (2015). https://doi.org/10.1007/s12274-015-0752-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0752-8

Keywords

Navigation