Skip to main content
Log in

X-ray-induced radiophotodynamic therapy (RPDT) using lanthanide micelles: Beyond depth limitations

Nano Research Aims and scope Submit manuscript

Abstract

We report lanthanide-based micelles integrating hypericin (Hyp) for X-ray-triggered photodynamic therapy (PDT). The lanthanide luminescence induced by X-ray irradiation excites the photosensitizer, which leads to the generation of singlet oxygen. This versatile approach can be extended to other photosensitizers or other types of liponanoparticles and can allow for magnetic resonance imaging (MRI) guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Setua, S.; Menon, D.; Asok, A.; Nair S.; Koyakutty, M. Folate receptor targeted, rare-earth oxide nanocrystals for bi-modal fluorescence and magnetic imaging of cancer cells. Biomaterials 2010, 31, 714–729.

    Article  Google Scholar 

  2. Bünzli, J. C. G.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077.

    Article  Google Scholar 

  3. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

    Article  Google Scholar 

  4. Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

    Article  Google Scholar 

  5. Delehanty, J. B.; Bradburne, C. E.; Susumu, K.; Boeneman, K.; Mei, B. C.; Farrell, D.; Blanco-Canosa, J. B.; Dawson, P. E.; Mattoussi, H.; Medintz, I. L. Spatiotemporal multicolor labeling of individual cells using peptide-functionalized quantum dots and mixed delivery techniques. J. Am. Chem. Soc. 2011, 133, 10482–10489.

    Article  Google Scholar 

  6. Pinaud, F.; Clarke, S.; Sittner, A.; Dahan, M. Probing cellular events, one quantum dot at a time. Nat. Methods 2010, 7, 275–285.

    Article  Google Scholar 

  7. Faulkner, S.; Pope, S. J. A.; Burton-Pye, B. P. Lanthanide complexes for luminescence imaging applications. Appl. Spectrosc. Rev. 2005, 40, 1–31.

    Article  Google Scholar 

  8. LaVan, D. A.; McGuire, T.; Langer, R. Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 2003, 21, 1184–1191.

    Article  Google Scholar 

  9. Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Delivery Rev. 2002, 54, 631–651.

    Article  Google Scholar 

  10. Xie, J.; Lee, S.; Chen, X. Y. Nanoparticle-based theranostic agents. Adv. Drug Delivery Rev. 2010, 62, 1064–1079.

    Article  Google Scholar 

  11. Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Gadolinium (III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem. Rev. 1999, 99, 2293–2352.

    Article  Google Scholar 

  12. Zhou, Z. X.; Lu, Z. R. Gadolinium-based contrast agents for magnetic resonance cancer imaging. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2013, 5, 1–18.

    Article  Google Scholar 

  13. Merbach, A. S.; Helm, L. Toth, E. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging; John Wiley & Sons, Ltd: Chichester, West Sussex, UK, 2013.

    Chapter  Google Scholar 

  14. Maguire, J. A.; Zhu, Y. Boron and Gadolinium Neutron Capture Therapy for Cancer Treatment; World Scientific Pub. Co.: Hackensack, NJ, 2012.

    Google Scholar 

  15. Eliseeva, S. V.; Bünzli, J. C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2010, 39, 189–227.

    Article  Google Scholar 

  16. Werts, M. H. V. Making sense of lanthanide luminescence. Sci. Prog. 2005, 88, 101–131.

    Article  Google Scholar 

  17. Urbain, G. La phosphorescence cathodique des terres rares. Ann. Chim. Phys. 1909, 8, 222–375.

    Google Scholar 

  18. Kašcáková, S.; Giuliani, A.; Jamme, F.; Refregiers, M. Photodynamic Therapy. In Radiation Damage in Biomolecular Systems; Springer: Dordrecht, Heidelberg, London, New York, 2012; pp 445–460.

    Chapter  Google Scholar 

  19. Roelants, M.; Lackner, B.; Waser, M.; Falk, H.; Agostinis, P.; Van Poppel, H.; de Witte, P. A. M. In vitro study of the phototoxicity of bathochromically-shifted hypericin derivatives. Photochem. Photobiol. Sci. 2009, 8, 822–829.

    Article  Google Scholar 

  20. Carpenter, S.; Fehr, M. J.; Kraus, G. A.; Petrich, J. W. Chemiluminescent activation of the antiviral activity of hypericin: A molecular flashlight. Proc. Natl. Acad. Sci. USA 1994, 91, 12273–12277.

    Article  Google Scholar 

  21. Wen, J.; Chowdhury, P.; Wills, N. J.; Wannemuehler, Y.; Park, J.; Kesavan, S.; Carpenter, S.; Kraus, G. A.; Petrich, J. W. Toward the molecular flashlight: Preparation, properties and photophysics of a hypericin-luciferin tethered molecule. Photochem. Photobiol. 2002, 76, 153–157.

    Article  Google Scholar 

  22. Theodossiou, T.; Hothersall, J. S.; Woods, E. A.; Okkenhaug, K.; Jacobson, J.; MacRobert, A. J. Firefly luciferin-activated rose bengal: In vitro photodynamic therapy by intracellular chemiluminescence in transgenic NIH 3T3 cells. Cancer Res. 2003, 63, 1818–1821.

    Google Scholar 

  23. Wang, F.; Zhang, Y.; Fan, X. P.; Wang, M. Q. Facile synthesis of water-soluble LaF3: Ln3+ nanocrystals. J. Mater. Chem. 2006, 16, 1031–1034.

    Article  Google Scholar 

  24. Liu, Y. F.; Chen, W.; Wang, S. P.; Joly, A. G.; Westcott, S.; Woo, B. K. X-ray luminescence of LaF3: Tb3+ and LaF3: Ce3+, Tb3+ water-soluble nanoparticles. J. Appl. Phys. 2008, 103, 063105.

    Article  Google Scholar 

  25. Liu, Y. F.; Chen, W.; Wang, S. P.; Joly, A. G. Investigation of water-soluble X-ray luminescence nanoparticles for photodynamic activation. Appl. Phys. Lett. 2008, 92, 043901.

    Article  Google Scholar 

  26. Bulin, A. L.; Truillet, C.; Chouikrat, R.; Lux, F.; Frochot, C.; Amans, D.; Ledoux, G.; Tillement, O.; Perriat, P.; Barberi-Heyob, M. et. al. X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyins. J. Phys. Chem. C 2013, 117, 21583–21589.

    Article  Google Scholar 

  27. Ma, L.; Zou, X.; Chen, W. A new X-ray activated nanoparticle photosensitizer for cancer treatment. J. Biomed. Nanotechnol. 2014, 10, 1501–1508.

    Article  Google Scholar 

  28. Ma, L.; Zou, X. J.; Bui, B.; Chen, W.; Song, K. H.; Solberg, T. X-ray excited ZnS: Cu, Co afterglow nanoparticles for photodynamic activation. Appl. Phys. Lett. 2014, 105, 013702.

    Article  Google Scholar 

  29. Bonnet, C. S.; Pellegatti, L.; Buron, F.; Shade, C. M.; Villette, S.; Kubícek, V.; Guillaumet, G.; Suzenet, F.; Petoud, S.; Tóth, É. Hydrophobic chromophore cargo in micellar structures: A different strategy to sensitize lanthanide cations. Chem. Commun. 2010, 46, 124–126.

    Article  Google Scholar 

  30. Bonnet, C. S.; Buron, F.; Caillé, F., Shade, C. M.; Drahoš, B.; Pellegatti, L.; Zhang, J.; Villette, S.; Helm, L.; Pichon, C. et. al. Pyridine-based lanthanide complexes combining MRI and NIR luminescence activities. Chem.—Eur. J. 2012, 18, 1419–1431.

    Article  Google Scholar 

  31. Chrysochoos, J. Fluorescence enhancement of Eu3+ by Tb3+ in dimethylsulfoxide (DMSO). J. Lumin. 1974, 9, 79–93.

    Article  Google Scholar 

  32. Jiao, H.; Zhang, N.; Jing, X. P.; Jiao, D. M. Influence of rare earth elements (Sc, La Gd and Lu) on the luminescent properties of green phosphor Y2SiO5:Ce,Tb. Opt. Mater. (Amst). 2007, 29, 1023–1028.

    Article  Google Scholar 

  33. Armelao, L.; Heigl, F.; Jürgensen, A.; Blyth, R. I. R.; Regier, T.; Zhou, X. T.; Sham, T. K. X-ray excited optical luminescence studies of ZnO and Eu-doped ZnO nanostructures. J. Phys. Chem. C 2007, 111, 10194–10200.

    Article  Google Scholar 

  34. Trans-1-(2'-methoxyvinyl)pyrene. http://products.invitrogen. com/ivgn/product/M7913 (accessed Dec 24, 2014).

  35. Kascakova, S.; Refregiers, M.; Jancura, D.; Sureau, F.; Maurizot, J. C.; Miskovsky, P. High level of low-density lipoprotein receptors enhance hypericin uptake by U-87 MG cells in the presence of LDL. Photochem. Photobiol. 2005, 81, 1395–1403.

    Article  Google Scholar 

  36. Giuliani, A.; Jamme, F.; Rouam, V.; Wien, F.; Giorgetta, J. L.; Lagarde, B.; Chubar, O.; Bac, S.; Yao, I.; Rey, S. et al. DISCO: A low-energy multipurpose beamline at synchrotron SOLEIL. J. Synchrotron Radiat. 2009, 16, 835–841.

    Article  Google Scholar 

  37. Jamme, F.; Villette, S.; Giuliani, A.; Rouam, V.; Wien, F.; Lagarde, B.; Réfrégiers, M. Synchrotron UV fluorescence microscopy uncovers new probes in cells and tissues. Microsc. Microanal. 2010, 16, 507–514.

    Article  Google Scholar 

  38. Edelstein, A.; Amodaj, N.; Hoover, K.; Vale, R.; Stuurman, N. Computer control of microscopes using micromanager. Curr. Protoc. Mol. Biol. 2010, 92, 14.20.1–14.20.17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Réfrégiers.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaščáková, S., Giuliani, A., Lacerda, S. et al. X-ray-induced radiophotodynamic therapy (RPDT) using lanthanide micelles: Beyond depth limitations. Nano Res. 8, 2373–2379 (2015). https://doi.org/10.1007/s12274-015-0747-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0747-5

Keywords

Navigation