Skip to main content
Log in

Scalable nanomanufacturing of surfactant-free carbon nanotube inks for spray coatings with high conductivity

Nano Research Aims and scope Submit manuscript

Abstract

Spray-coated carbon nanotube films offer a simple and printable solution for fabricating low cost, lightweight, and flexible thin-film electronics. However, current nanotube spray inks require either a disruptive surfactant or destructive surface functionalization to stabilize dispersions at the cost of the electrical properties of the deposited film. We demonstrate that high-purity few-walled carbon nanotubes may be stabilized in isopropanol after surface functionalization and that optimizing the ink stability dramatically enhances the conductivity of subsequent spray-coated thin films. We consequently report a surfactant-free carbon nanotube ink for spray-coated thin films with conductivities reaching 2,100 S/cm. Zeta-potential measurements, used to quantify the nanotube ink dispersion quality, directly demonstrate a positive correlation with the spraycoated film conductivity, which is the key metric for high-performance printed electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Scarselli, M.; Castrucci, P.; Crescenzi, M. Electronic and optoelectronic nano-devices based on carbon nanotubes. J. Phys: Condens. Mat. 2012, 24, 313202.

    Google Scholar 

  2. Bandaru, P. R. Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotechno. 2007, 7, 1239–1267.

    Article  Google Scholar 

  3. Hu, L. B.; Hecht, D. S.; Grüner, G. Carbon nanotube thin films: Fabrication, properties, and applications. Chem. Rev. 2010, 110, 5790–5844.

    Article  Google Scholar 

  4. Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

    Article  Google Scholar 

  5. Cui, Z.; Zhao, J.; Zhang, T. Printed carbon nanotube devices and their applications. In 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Kyoto, Japan, March 5–8, 2012; IEEE: Danvers, MA, 2012.

    Book  Google Scholar 

  6. Hu, L.; Hecht, D. S.; Gruner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 2004, 4, 2513–2517.

    Article  Google Scholar 

  7. Martinez, M.; Callejas, M.; Benito, A.; Cochet, M.; Seeger, T.; Ansón, A.; Schreiber, J.; Gordon, C.; Marhic, C.; Chauvet, O. et al. Sensitivity of single wall carbon nanotubes to oxidative processing: Structural modification, intercalation and functionalisation. Carbon 2003, 41, 2247–2256.

    Article  Google Scholar 

  8. Bower, C.; Kleinhammes, A.; Wu, Y.; Zhou, O. Intercalation and partial exfoliation of single-walled carbon nanotubes by nitric acid. Chem. Phys. Lett. 1998, 288, 481–486.

    Article  Google Scholar 

  9. Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008, 46, 833–840.

    Article  Google Scholar 

  10. Geng, H. Z.; Kim, K. K.; So, K. P.; Lee, Y. S.; Chang, Y.; Lee, Y. H. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 2007, 129, 7758–7759.

    Article  Google Scholar 

  11. Hersam, M. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 2008, 3, 387–394.

    Article  Google Scholar 

  12. Yu, A.; Su, C. C. L.; Roes, I.; Fan, B.; Haddon, R. C. Gramscale preparation of surfactant-free, carboxylic acid groups functionalized, individual single-walled carbon nanotubes in aqueous solution. Langmuir 2010, 26, 1221–1225.

    Article  Google Scholar 

  13. Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829.

    Article  Google Scholar 

  14. Majumder, M.; Rendall, C.; Li, M.; Behabtu, N.; Eukel, J. A.; Hauge, R. H.; Schmidt, H. K.; Pasquali, M. Insights into the physics of spray coating of SWNT films. Chem. Eng. Sci. 2010, 65, 2000–2008.

    Article  Google Scholar 

  15. Lee, S. W.; Gallant, B. M.; Lee, Y.; Yoshida, N.; Kim, D.; Tamada, Y.; S. Noda, S.; Yamada, A.; Shao-Horn, Y. Selfstanding positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries. Energy Environ. Sci. 2012, 5, 5437–5444.

    Article  Google Scholar 

  16. Feng, Y.; Ju, X.; Feng, W.; Zhang, H.; Cheng, Y.; Liu, J.; Fujii, A.; Ozaki, M.; Yoshino, K. Organic solar cells using few-walled carbon nanotubes electrode controlled by the balance between sheet resistance and the transparency. Appl. Phys. Lett. 2009, 94, 123302.

    Article  Google Scholar 

  17. Zhao. B.; Zhang, L.; Liang, Y. X.; Qiu, H. X.; Yang, J. H. Efficient growth of millimeter-long few-walled carbon nanotube forests and their oil sorption. Appl. Phys. A 2012, 108, 351–355.

    Article  Google Scholar 

  18. Qian, C.; Qi, H.; Gao, B.; Cheng, Y.; Qiu, Q.; Qin, L. C.; Zhou, O.; Liu, J. Fabrication of small diameter few-walled carbon nanotubes with enhanced field emission property. J. Nanosci. Nanotechnol. 2006, 6, 1346–1349.

    Article  Google Scholar 

  19. Kumar, N. A.; Jeon, I. Y.; Sohn, G. J.; Jain, R.; Kumar, S.; Baek, J. B. Sponge behaviors of functionalized few-walled carbon nanotubes. ACS Nano 2011, 5, 2324–2331.

    Article  Google Scholar 

  20. Di, J. T.; Hu, D. M.; Chen, H. Y.; Yong, Z. Z.; Chen, M. H.; Feng, Z. H.; Zhu, Y. T.; Li, Q. W. Ultrastrong, foldable, and highly conductive carbon nanotube film. ACS Nano 2012, 6, 5457–5464.

    Article  Google Scholar 

  21. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47.

    Article  Google Scholar 

  22. Hilding, J.; Grulke, E. A.; Zhang, Z. G.; Lockwood, F. Dispersion of carbon nanotubes in liquids. J. Disper. Sci. Technol. 2003, 24, 1–41.

    Article  Google Scholar 

  23. Banerjee, S.; Hemraj-Benny, T.; Wong, S. S. Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater. 2005, 17, 17–29.

    Article  Google Scholar 

  24. Hou, Y.; Tang, J.; Zhang, H. B.; Qian, C.; Feng, Y. Y.; Liu, J. Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites. ACS Nano 2009, 3, 1057–1062.

    Article  Google Scholar 

  25. Numata, H.; Ihara, K.; Saito, T.; Endoh, H.; Nihey, F. Electrical property of printed transistors fabricated with various types of carbon nanotube ink. In 2012 12th IEEE International Conference on Nanotechnology, Birmingham, UK, August 20–23, 2012; IEEE: Danvers, MA, 2012.

    Book  Google Scholar 

  26. Feng, Y.; Zhang, H.; Hou, Y.; McNicholas, T. P.; Yuan, D.; Yang, S.; Ding, L.; Feng, W.; Liu, J. Room temperature purification of few-walled carbon nanotubes with high yield. ACS Nano 2008, 2, 1634–1638.

    Article  Google Scholar 

  27. Panchakarla, L S.; Govindaraj, A. Covalent and non-covalent functionalization and solubilization of double-walled carbon nanotubes in nonpolar and aqueous media. J. Chem. Sci. 2008, 120, 607–611.

    Article  Google Scholar 

  28. Yudianti, R.; Onggo, H.; Sudirman; Saito, Y.; Iwata, T.; Azuma, J. I. Analysis of functional group sited on multiwall carbon nanotube surface. Open Mater. Sci. J. 2011, 5, 242–247.

    Article  Google Scholar 

  29. White, B.; Banerjee, S.; O’Brien, S.; Turro, N. J.; Herman, I. P. Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J. Phys. Chem. C 2007, 111, 13684–13690.

    Article  Google Scholar 

  30. Huang, C.; Grobert, N.; Watt, A. A. R.; Johnston, C.; Crossley, A.; Young, N. P.; Grant, P. S. Layer-by-layer spray deposition and unzipping of single-wall carbon nanotube-based thin film electrodes for electrochemical capacitors. Carbon 2013, 61, 525–536.

    Article  Google Scholar 

  31. Lee, B. J.; Shin, E. C.; Jeong, G. H. Length-controlled fewwalled carbon nanotubes and their effect on the electrical property of flexible transparent conductive films. Appl. Phys. A 2012, 107, 843–848.

    Article  Google Scholar 

  32. Qi, H.; Qian, C.; Liu, J. Synthesis of high-purity few-walled carbon nanotubes from ethanol/methanol mixture. Chem. Mater. 2006, 18, 5691–5695.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangbing Hu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preston, C., Song, D., Dai, J. et al. Scalable nanomanufacturing of surfactant-free carbon nanotube inks for spray coatings with high conductivity. Nano Res. 8, 2242–2250 (2015). https://doi.org/10.1007/s12274-015-0735-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0735-9

Keywords

Navigation