Skip to main content
Log in

Chemically modified STM tips for atomic-resolution imaging of ultrathin NaCl films

Nano Research Aims and scope Submit manuscript

Abstract

Cl-functionalized scanning tunneling microscopy (STM) tips are fabricated by modifying a tungsten STM tip in situ on islands of ultrathin NaCl(100) films on Au(111) surfaces. The functionalized tips are used to achieve clear atomicresolution imaging of NaCl(100) islands. In comparison with bare metal tips, the chemically modified tips yield drastically enhanced spatial resolution as well as contrast reversal in STM topographs, implying that Na atoms, rather than Cl atoms, are imaged as protrusions. STM simulations based on a Green’s function formalism reveal that the experimentally observed contrast reversal in the STM topographs is due to the highly localized character of the Cl-pz states at the tip apex. An additional remarkable characteristic of the modified tips is that in dI/dV maps, a Na atom appears as a ring with a diameter that depends crucially on the tip-sample distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Gross, L.; Moll, N.; Mohn, F.; Curioni, A.; Meyer, G.; Hanke, F.; Persson, M. High-resolution molecular orbital imaging using a p-wave STM tip. Phys. Rev. Lett. 2011, 107, 086101.

    Article  Google Scholar 

  2. Martínez, J. I.; Abad, E.; González, C.; Flores, F.; Ortega, J. Improvement of scanning tunneling microscopy resolution with H-sensitized tips. Phys. Rev. Lett. 2012, 108, 246102.

    Article  Google Scholar 

  3. Krasnikov, S. A.; Lübben, O.; Murphy, B. E.; Bozhko, S. I.; Chaika, A. N.; Sergeeva, N. N.; Bulfin, B.; Shvets, I. V. Writing with atoms: Oxygen adatoms on the MoO2/Mo(110) surface. Nano Res. 2013, 6, 929–937.

    Article  Google Scholar 

  4. Lingley, Z.; Mahalingam, K.; Lu, S. Y.; Brown, G. J.; Madhukar, A. Nanocrystal-semiconductor interface: Atomicresolution cross-sectional transmission electron microscope study of lead sulfide nanocrystal quantum dots on crystalline silicon. Nano Res. 2014, 7, 219–227.

    Article  Google Scholar 

  5. Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 2009, 325, 1110–1114.

    Article  Google Scholar 

  6. Zhao, R. Q.; Zhang, Y. F.; Gao, T.; Gao, Y. B.; Liu, N.; Fu, L.; Liu, Z. F. Scanning tunneling microscope observations of non-AB stacking of graphene on Ni films. Nano Res. 2011, 4, 712–721.

    Article  Google Scholar 

  7. Li, Z.; Chen, H. Y. T.; Schouteden, K.; Lauwaet, K.; Giordano, L.; Trioni, M. I.; Janssens, E.; Iancu, V.; Van Haesendonck, C.; Lievens, P. et al. Self-doping of ultrathin insulating films by transition metal atoms. Phys. Rev. Lett. 2014, 112, 026102.

    Article  Google Scholar 

  8. Repp, J.; Meyer, G.; Stojkovic, S. M.; Gourdon, A.; Joachim, C. Molecules on insulating films: Scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 2005, 94, 026803.

    Article  Google Scholar 

  9. Repp, J.; Meyer, G.; Paavilainen, S.; Olsson, F. E.; Persson, M. Imaging bond formation between a gold atom and pentacene on an insulating surface. Science 2006, 312, 1196–1199.

    Article  Google Scholar 

  10. Lin, X.; Nilius, N.; Freund, H. J.; Walter, M.; Frondelius, P.; Honkala, K.; Häkkinen, H. Quantum well states in twodimensional gold clusters on MgO thin films. Phys. Rev. Lett. 2009, 102, 206801.

    Article  Google Scholar 

  11. Repp, J.; Meyer, G.; Olsson, F. E.; Persson, M. Controlling the charge state of individual gold adatoms. Science 2004, 305, 493–495.

    Article  Google Scholar 

  12. Olsson, F. E.; Paavilainen, S.; Persson, M.; Repp, J.; Meyer, G. Multiple charge states of Ag atoms on ultrathin NaCl films. Phys. Rev. Lett. 2007, 98, 176803.

    Article  Google Scholar 

  13. Loth, S.; Lutz, C. P.; Heinrich, A. J. Spin-polarized spin excitation spectroscopy. New J. Phys. 2010, 12, 125021.

    Article  Google Scholar 

  14. Novaes, F. D.; Lorente, N.; Gauyacq, J. P. Quenching of magnetic excitations in single adsorbates at surfaces: Mn on CuN/Cu(100). Phys. Rev. B 2010, 82, 155401.

    Article  Google Scholar 

  15. Loth, S.; Baumann, S.; Lutz, C. P.; Eigler, D. M.; Heinrich, A. J. Bistability in atomic-scale antiferromagnets. Science 2012, 335, 196–199.

    Article  Google Scholar 

  16. Hebenstreit, W.; Redinger, J.; Horozova, Z.; Schmid, M.; Podloucky, R.; Varga, P. Atomic resolution by STM on ultra-thin films of alkali halides: Experiment and local density calculations. Surf. Sci. 1999, 424, 321–328.

    Article  Google Scholar 

  17. Repp, J.; Fölsch, S.; Meyer, G.; Rieder, K. H. Ionic films on vicinal metal surfaces: Enhanced binding due to charge modulation. Phys. Rev. Lett. 2001, 86, 252–255.

    Article  Google Scholar 

  18. Repp, J.; Meyer, G.; Rieder, K. H. Snell’s law for surface electrons: Refraction of an electron gas imaged in real space. Phys. Rev. Lett. 2004, 92, 036803.

    Article  Google Scholar 

  19. Repp, J.; Meyer, G.; Paavilainen, S.; Olsson, F. E.; Persson, M. Scanning tunneling spectroscopy of Cl vacancies in NaCl films: Strong electron-phonon coupling in double-barrier tunneling junctions. Phys. Rev. Lett. 2005, 95, 225503.

    Article  Google Scholar 

  20. Lauwaet, K.; Schouteden, K.; Janssens, E.; Van Haesendonck, C.; Lievens, P. Dependence of the NaCl/Au(111) interface state on the thickness of the NaCl layer. J. Phys.: Condens. Matter. 2012, 24, 475507.

    Google Scholar 

  21. Olsson, F. E.; Persson, M.; Repp, J.; Meyer, G. Scanning tunneling microscopy and spectroscopy of NaCl overlayers on the stepped Cu(311) surface: Experimental and theoretical study. Phys. Rev. B 2005, 71, 075419.

    Article  Google Scholar 

  22. Lauwaet, K.; Schouteden, K.; Janssens, E.; Van Haesendonck, C.; Lievens, P.; Trioni, M. I.; Giordano, L.; Pacchioni, G. Resolving all atoms of an alkali halide via nanomodulation of the thin NaCl film surface using the Au(111) reconstruction. Phys. Rev. B 2012, 85, 245440.

    Article  Google Scholar 

  23. Schouteden, K.; Lauwaet, K.; Janssens, E.; Barcaro, G.; Fortunelli, A.; Van Haesendonck, C.; Lievens, P. Probing the atomic structure of metallic nanoclusters with the tip of a scanning tunneling microscope. Nanoscale 2014, 6, 2170–2176.

    Article  Google Scholar 

  24. Cheng, Z. H.; Du, S. X.; Guo, W.; Gao, L.; Deng, Z. T.; Jiang, N.; Guo, H. M.; Tang, H.; Gao, H. J. Direct imaging of molecular orbitals of metal phthalocyanines on metal surfaces with an O2-functionalized tip of a scanning tunneling microscope. Nano Res. 2011, 4, 523–530.

    Article  Google Scholar 

  25. Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J. M.; Colchero, J.; Gomez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

    Article  Google Scholar 

  26. Hla, S. W. Scanning tunneling microscopy single atom/ molecule manipulation and its application to nanoscience and technology. J. Vac. Sci. Technol. B 2005, 23, 1351–1360.

    Article  Google Scholar 

  27. Hagelaar, J. H. A.; Flipse, C. F. J.; Cerdá, J. I. Modeling realistic tip structures: Scanning tunneling microscopy of NO adsorption on Rh(111). Phys. Rev. B 2008, 78, 161405.

    Article  Google Scholar 

  28. Cerdá, J.; Van Hove, M. A.; Sautet, P.; Salmeron, M. Efficient method for the simulation of STM images. I. Generalized Green-function formalism. Phys. Rev. B 1997, 56, 15885–15899.

    Article  Google Scholar 

  29. Janta-Polczynski, B. A.; Cerda, J. I.; Ethier-Majcher, G.; Piyakis, K.; Rochefort, A. Parallel scanning tunneling microscopy imaging of low dimensional nanostructures. J. Appl. Phys. 2008, 104, 023702.

    Article  Google Scholar 

  30. Cerdá, J.; Soria, F. Accurate and transferable extended Hückeltype tight-binding parameters. Phys. Rev. B 2000, 61, 7965–7971.

    Article  Google Scholar 

  31. Cerdá, J.; Yoon, A.; Van Hove, M. A.; Sautet, P.; Salmeron, M.; Somorjai, G. A. Efficient method for the simulation of STM images. II. Application to clean Rh(111) and Rh(111)+c(4×2)-2S. Phys. Rev. B 1997, 56, 15900–15918.

    Article  Google Scholar 

  32. Chen, W.; Madhavan, V.; Jamneala, T.; Crommie, M. F. Scanning tunneling microscopy observation of an electronic superlattice at the surface of clean gold. Phys. Rev. Lett. 1998, 80, 1469–1472.

    Article  Google Scholar 

  33. Kichin, G.; Weiss, C.; Wagner, C.; Tautz, F. S.; Temirov, R. Single molecule and single atom sensors for atomic resolution imaging of chemically complex surfaces. J. Am. Chem. Soc. 2011, 133, 16847–16851.

    Article  Google Scholar 

  34. Krenner, W.; Kuhne, D.; Klappenberger, F.; Barth, J. V. Assessment of scanning tunneling spectroscopy modes inspecting electron confinement in surface-confined supramolecular networks. Sci. Rep. 2013, 3, 1454.

    Article  Google Scholar 

  35. Schouteden, K.; Li, Z.; Iancu, V.; Muzychenko, D. A.; Janssens, E.; Lievens, P.; Van Haesendonck, C. Engineering the band structure of nanoparticles by an incommensurate cover layer. J. Phys. Chem. C 2014, 118, 18271–18277.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chris Van Haesendonck or Jorge I. Cerdá.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Schouteden, K., Iancu, V. et al. Chemically modified STM tips for atomic-resolution imaging of ultrathin NaCl films. Nano Res. 8, 2223–2230 (2015). https://doi.org/10.1007/s12274-015-0733-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0733-y

Keywords

Navigation