Skip to main content
Log in

Magnetically responsive photonic films with high tunability and stability

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We demonstrate the fabrication of magnetically assembled one-dimensional chain-like photonic nanostructures with significantly high photonic stability. The key lies in the use of agarose hydrogel to prevent coagulation of the magnetic assemblies. When exposed to an external magnetic field, negatively charged Fe3O4@SiO2 particles can effectively assemble in the hydrogel matrix into one-dimensional chains with internal periodicity and display a fast, fully reversible, and tunable photonic response to the changes in the external field. The steric hindrance and the hydrogen bonding from the agarose network effectively limit the migration of the Fe3O4@SiO2 particles and their chain-like assemblies. As a result, the system shows remarkable stability in photonic response under external magnetic fields of large gradients, something which has previously been a challenge. The ability to stabilize the magnetic particle assemblies over a long period represents a major stride toward practical applications of such field-responsive photonic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ge, J.; Yin, Y. Responsive photonic crystals. Angew. Chem. Int. Ed. 2011, 50, 1492.

    Article  Google Scholar 

  2. Matsubara, K.; Watanabe, M.; Takeoka, Y. A thermally adjustable multicolor photochromic hydrogel. Angew. Chem., Int. Ed. 2007, 46, 1688.

    Article  Google Scholar 

  3. Maurer, M. K.; Lednev, I. K.; Asher, S. A. Photoswitchable spirobenzopyran-based photochemically controlled photonic crystals. Adv. Funct. Mater. 2005, 15, 1401.

    Article  Google Scholar 

  4. Ge, J.; Hu, Y.; Yin, Y. Highly tunable superparamagnetic colloidal photonic crystals. Angew. Chem. Int. Ed. 2007, 46, 7428.

    Article  Google Scholar 

  5. Ge, J.; Hu, Y.; Zhang, T.; Huynh, T.; Yin, Y. Self-assembly and field-responsive optical diffractions of superparamagnetic colloids. Langmuir 2008, 24, 3671.

    Article  Google Scholar 

  6. Ge, J.; Yin, Y. Magnetically responsive colloidal photonic crystals. J. Mater. Chem. 2008, 18, 5041.

    Article  Google Scholar 

  7. Ge, J.; Yin, Y. Magnetically tunable colloidal photonic structures in alkanol solutions. Adv. Mater. 2008, 20, 3485.

    Article  Google Scholar 

  8. Hu, Y.; He, L.; Yin, Y. Charge stabilization of superparamagnetic colloids for high performance responsive photonic structures. Small 2012, 8, 3795.

    Article  Google Scholar 

  9. Hu, Y.; He, L.; Yin, Y. Magnetically responsive photonic nanochains. Angew. Chem. Int. Ed. 2011, 50, 3747.

    Article  Google Scholar 

  10. Xu, X.; Friedman, G.; Humfeld, K. D.; Majetich, S. A.; Asher, S. A. Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals. Chem. Mater. 2002, 14, 1249.

    Article  Google Scholar 

  11. Wang, M.; He, L.; Yin, Y. Magnetic field guided colloidal assembly. Mater. Today 2013, 16, 110.

    Article  Google Scholar 

  12. Zhang, Q.; Janner, M.; He, L.; Wang, M.; Hu, Y.; Lu, Y.; Yin, Y. Photonic labyrinths: Two-dimensional dynamic magnetic assembly and in situ solidification. Nano Lett. 2013, 13, 1770.

    Google Scholar 

  13. Malik, V.; Petukhov, A. V.; He, L.; Yin, Y.; Schmidt, M. Colloidal crystallization and structural changes in suspensions of silica/magnetite core-shell nanoparticles. Langmuir 2012, 28, 14777.

    Article  Google Scholar 

  14. Haque, M. A.; Kurokawa, T.; Kamita, G.; Yue, Y.; Gong, J. P. Rapid and reversible tuning of structural color of a hydrogel over the entire visible spectrum by mechanical stimulation. Chem. Mater. 2011, 23, 5200.

    Article  Google Scholar 

  15. Asher, S. A.; Holtz, J.; Liu, L.; Wu, Z. Self-assembly motif for creating submicron periodic materials. polymerized crystalline colloidal arrays. J. Am. Chem. Soc. 1994, 116, 4997.

    Article  Google Scholar 

  16. Foulger, S. H.; Jiang, P.; Ying, Y.; Lattam, A. C.; Smith, D. W.; Ballato, J. Photonic bandgap composites. Adv. Mater. 2001, 13, 1898.

    Article  Google Scholar 

  17. Arott, S.; Fulmer, A.; Scott, W. E. The agarose double helix and its function in agarose gel structure. J. Mol. Biol. 1974, 90, 269.

    Article  Google Scholar 

  18. Brody, J. R.; Kern, S. E. History and principles of conductive media for standard DNA electrophoresis. Anal. Biochem. 2004, 333, 1.

    Article  Google Scholar 

  19. Djabourov, M.; Clark, A. H.; Rowlands, D. W.; Ross-Murphy, S. B. Small-angle x-ray scattering characterization of agarose sols and gels. Macromolecules 1989, 22, 180.

    Article  Google Scholar 

  20. Labropoulos, K. C.; Niesz, D. E.; Danforth, S. C.; Kevrekidis, P. G. Dynamic rheology of agar gels: Theory and experiments. Part I. Development of a rheological model. Carbohydr. Polym. 2002, 50, 393.

    Article  Google Scholar 

  21. Liu, Q.; Li, J.; Liu, H.; Tora, I.; Ide, M.; Lu, J.; Davis, R.; Green, D.; Landers, J. Rapid, cost-effective DNA quantification via a visually-detectable aggregation of superparamagnetic silica-magnetite nanoparticles. Nano Res. 2014, 7, 755.

    Article  Google Scholar 

  22. Pernodet, N.; Maaloum, M.; Tinland, B. Pore size of agarose gels by atomic force microscopy. Electrophoresis 1997, 18, 55.

    Article  Google Scholar 

  23. Maaloum, M.; Pernodet, N.; Tinland, B. Agarose gel structure using atomic force microscopy: Gel concentration and ionic strength effects. Electrophoresis 1998, 19, 1606.

    Article  Google Scholar 

  24. Xiong, J.; Narayanan, J.; Liu, X.; Chong, T.; Chen, S.; Chung, T. Topology evolution and gelation mechanism of agarose gel. J. Phys. Chem. B 2005, 109, 5638.

    Article  Google Scholar 

  25. Ge, J.; Hu, Y.; Biasini, M.; Beyermann, W. P.; Yin, Y. Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem. Int. Ed. 2007, 46, 4342.

    Article  Google Scholar 

  26. Hu, Y.; Zhang, Q.; Goebl, J.; Zhang, T.; Yin, Y. Control over the permeation of silica nanoshells by surface-protected etching with water. Phys. Chem. Chem. Phys. 2010, 12, 11836.

    Article  Google Scholar 

  27. Workshop on Marine Algae Biotechnology: Summary Report; National Academy Press, 1986.

  28. Narayanan, J.; Xiong, J.; Liu, X. Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques. JPCS 2006, 28, 83.

    Google Scholar 

  29. Griess, G. A.; Guiseley, K. B.; Serwer, P. The relationship of agarose gel structure to the sieving of spheres during agarose gel electrophoresis. Biophys. J. 1993, 65, 138.

    Article  Google Scholar 

  30. Johnson, E. M.; Berk, D. A.; Jain, R. K.; Deen, W. M. Hindered diffusion in agarose gels: Test of effective medium model. Biophys. J. 1996, 70, 1017.

    Article  Google Scholar 

  31. Xia, Y.; Gates, B.; Yin, Y.; Lu, Y. Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 2000, 12, 693.

    Article  Google Scholar 

  32. Phillips, R. J.; Deen, W. M.; Brady, J. F. Hindered transport in fibrous membranes and gels: Effect of solute size and fiber configuration. J. Colloid. Interface Sci. 1990, 139, 363.

    Article  Google Scholar 

  33. Yamakov, V.; Milchev, A. Diffusion of a polymer chain in porous media. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 1997, 55, 1704.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadong Yin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., He, L., Han, X. et al. Magnetically responsive photonic films with high tunability and stability. Nano Res. 8, 611–620 (2015). https://doi.org/10.1007/s12274-015-0732-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0732-z

Keywords

Navigation