Skip to main content
Log in

Germanium nanopyramid arrays showing near-100% absorption in the visible regime

Nano Research Aims and scope Submit manuscript

Abstract

Solar energy is regarded as one of the most plentiful sources of renewable energy. An extraordinary light-harvesting property of a germanium periodic nanopyramid array is reported in this Letter. Both our theoretical and experimental results demonstrate that the nanopyramid array can achieve perfect broadband absorption from 500- to 800-nm wavelength. Especially in the visible regime, the experimentally measured absorption can even reach 100%. Further analyses reveal that the intrinsic antireflection effect and slow-light waveguide mode play an important role in the ultra-high absorption, which is helpful for the research and development of photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213.

    Article  Google Scholar 

  2. Catchpole, K. R.; Polman, A. Plasmonic solar cells. Opt. Express. 2008, 16, 21793–21800.

    Article  Google Scholar 

  3. Zeng, B. B.; Gan, Q. Q.; Kafafi, Z. H.; Bartoli, F. J. Polymeric photovoltaics with various metallic plasmonic nanostructures. J. Appl. Phys. 2013, 113, 063109.

    Google Scholar 

  4. Gan, Q. Q.; Bartoli, F. J.; Kafafi, Z. H. Plasmonic-enhanced organic photovoltaics: Breaking the 10% efficiency barrier. Adv. Mater. 2013, 25, 2385–2396.

    Article  Google Scholar 

  5. Gunawan, O.; Wang, K.; Fallahazad, B.; Zhang, Y.; Tutuc, E.; Guha, S. High performance wire-array silicon solar cells. Prog. Photovoltaics. 2011, 19, 307–312.

    Article  Google Scholar 

  6. Nelson, J. Physics of Solar Cell; Imperial College Press: London, 2008.

    Google Scholar 

  7. Cao, L. Y.; Fan, P. Y.; Vasudev, A. P.; White, J. S.; Yu, Z. F.; Cai, W. S.; Schuller, J. A.; Fan, S. H.; Brongersma, M. L. Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 2010, 10, 439–445.

    Article  Google Scholar 

  8. Guo, H. M.; Wen, L.; Li, X. H.; Zhao, Z. F.; Wang, Y. Q. Analysis of optical absorption in GaAs nanowire arrays. Nanoscale Res. Lett. 2011, 6, 617.

    Article  Google Scholar 

  9. Cao, L. Y.; White, J. S.; Park, J. S.; Schuller, J. A.; Clemens, B. M.; Brongersma, M. L. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 2009, 8, 643–647.

    Article  Google Scholar 

  10. Hu, L.; Chen, G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 2007, 7, 3249–3252.

    Article  Google Scholar 

  11. Tsai, S. J.; Ballarotto, M.; Romero, D. B.; Herman, W. N.; Kan, H. C.; Phaneuf, R. J. Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell. Opt. Express. 2010, 18, A528–535.

    Article  Google Scholar 

  12. Fan, Z. Y.; Kapadia, R.; Leu, P. W.; Zhang, X. B.; Chueh, Y. L.; Takei, K.; Yu, K.; Jamshidi, A.; Rathore, A. A.; Ruebusch, D. J. et al. Ordered arrays of dual-diameter nanopillars for maximized optical absorption. Nano Lett. 2010, 10, 3823–3827.

    Article  Google Scholar 

  13. Fan, Z.; Razavi, H.; Do, J. W.; Moriwaki, A.; Ergen, O.; Chueh, Y. L.; Leu, P. W.; Ho, J. C.; Takahashi, T.; Reichertz, L. A. et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 2009, 8, 648–653.

    Article  Google Scholar 

  14. Wang, B. M.; Leu, P. W. Enhanced absorption in silicon nanocone arrays for photovoltaics. Nanotechnology. 2012, 23, 194003.

    Article  Google Scholar 

  15. Wang, K. X. Z.; Yu, Z. F.; Liu, V.; Cui, Y.; Fan S. H. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett. 2012, 12, 1616-1619.

    Article  Google Scholar 

  16. Zhu, J.; Yu, Z. F.; Burkhard, G. F.; Hsu, C. M.; Connor, S. T.; Xu, Y. Q.; Wang, Q.; McGehee, M.; Fan, S. H.; Cui, Y. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 2009, 9, 279–282.

    Article  Google Scholar 

  17. Han, S. E.; Chen, G. Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett. 2010, 10, 1012–1015.

    Article  Google Scholar 

  18. Yahaya, N. A.; Yamada, N.; Kotaki, Y.; Nakayama, T. Characterization of light absorption in thin-film silicon with periodic nanohole arrays. Opt. Express. 2013, 21, 5924–5930.

    Article  Google Scholar 

  19. Zhang, L. C.; Yang, G.; Wang, K.; Fu, M.; Wang, Y.; Long, H.; Lu, P. X. Opt. Commun. 2013, 291, 395–399.

    Article  Google Scholar 

  20. Lin, C. X.; Martínez, L. J.; Povinelli, M. L. Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells. Opt. Express. 2013, 21, A872–882.

    Article  Google Scholar 

  21. Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342–2348.

    Article  Google Scholar 

  22. Zhang, B. X.; Zhao, Y. H.; Hao, Q. Z.; Kiraly, B.; Khoo, I. C.; Chen, S. F.; Huang, T. J. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Opt. Express. 2011, 19, 15221–15228.

    Google Scholar 

  23. Hao, J. M.; Wang, J.; Liu, X. L.; Padilla, W. J.; Zhou, L.; Qiu, M. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 2010, 96, 251104.

    Google Scholar 

  24. Liu, K.; Zeng, B. B.; Song, H. M.; Gan, Q. Q.; Bartoli, F. J.; Kafafi, Z. H. Super absorption of ultra-thin organic photovoltaic films. Opt. Commun. 2014, 314, 48–56.

    Article  Google Scholar 

  25. Ji, D. X.; Song, H. M.; Zeng, X.; Hu, H. F.; Liu, K.; Zhang, N.; Gan, Q. Q. Broadband absorption engineering of hyperbolic metafilm patterns. Sci. Rep. 2014, 4, 4498.

    Google Scholar 

  26. Zeng, B. B.; Kafafi, Z. H.; Bartoli, F. J. Transparent electrodes based on two dimensional Ag nanogrids and double one-dimensional Ag nanogratings for organic photovoltaics. J. Photon. Energy. 2015, 5, 057005.

    Article  Google Scholar 

  27. Cui, Y. X.; Fung, K. H.; Xu, J.; Ma, H. J.; Jin, Y.; He, S. L.; Fang, N. X. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 2012, 12, 1443–1447.

    Article  Google Scholar 

  28. Fu, Y. Q.; Bryan, N. K. A.; San, O. A.; Hong, L. B. Data format transferring for FIB microfabrication. Int. J. Adv. Manuf. Tech. 2000, 16, 600–602.

    Article  Google Scholar 

  29. Fu, Y.; Bryan, N. K. A. Fabrication and characterization of slanted nanopillars arrays. J. Vac. Sci. Technol. B. 2005, 23, 984–989.

    Article  Google Scholar 

  30. Street, R. A. Hydrogenated Amorphous Silicon; Cambridge University Press: Cambridge, 1991.

    Book  Google Scholar 

  31. Shah, A. V.; Schade, H.; Vanecek, M.; Meier, J.; Vallat-Sauvain, E.; Wyrsch, N.; Kroll, U.; Droz, C.; Bailat, J. Thin-film silicon solar cell technology. Prog. Photovoltaics. 2004, 12, 113–142.

    Article  Google Scholar 

  32. Han, Q.; Jin, L.; Fu, Y. Q.; Yu, W. X. Polarization and incident angle insensitive germanium nano-pyramid array for perfect absorption in visible regime. Insciences J. 2014, 4, 19–26.

    Google Scholar 

  33. He, J.; He, S. L. Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate. IEEE Microw. Wirel. Co. 2005, 16, 96–98.

    Article  Google Scholar 

  34. Jiang, T.; Zhao, J.; Feng, Y. Stopping light by an air waveguide with anisotropic metamaterial cladding. Opt. Express. 2009, 17, 170–177.

    Article  Google Scholar 

  35. Tsakmakidis, K. L.; Boardman, A. D.; Hess, O. ‘Trapped rainbow’ storage of light in metamaterials. Nature. 2007, 450, 397–401.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqi Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Fu, Y., Jin, L. et al. Germanium nanopyramid arrays showing near-100% absorption in the visible regime. Nano Res. 8, 2216–2222 (2015). https://doi.org/10.1007/s12274-015-0731-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0731-0

Keywords

Navigation