Skip to main content
Log in

Tunable diameter electrostatically formed nanowire for high sensitivity gas sensing

Nano Research Aims and scope Submit manuscript

Abstract

We report on an electrostatically formed nanowire (EFN)-based sensor with tunable diameters in the range of 16 nm to 46 nm and demonstrate an EFNbased field-effect transistor as a highly sensitive and robust room temperature gas sensor. The device was carefully designed and fabricated using standard integrated processing to achieve the 16 nm EFN that can be used for sensing without any need for surface modification. The effective diameter for the EFN was determined using Kelvin probe force microscopy accompanied by threedimensional electrostatic simulations. We show that the EFN transistor is capable of detecting 100 parts per million of ethanol gas with bare SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Patolsky, F.; Lieber, C. M. Nanowire nanosensors. Mater. Today 2005, 8, 20–28.

    Article  Google Scholar 

  2. Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

    Article  Google Scholar 

  3. Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.

    Article  Google Scholar 

  4. Paska, Y.; Stelzner, T.; Christiansen, S.; Haick, H. Enhanced sensing of nonpolar volatile organic compounds by silicon nanowire field effect transistors. ACS Nano 2011, 5, 5620–5626.

    Article  Google Scholar 

  5. Chu, C. J.; Yeh, C. S.; Liao, C. K.; Tsai, L.-C.; Huang, C.-M.; Lin, H.-Y.; Shyue, J.- J.; Chen, Y.-T.; Chen, C.-D. Improving nanowire sensing capability by electrical field alignment of surface probing molecules. Nano Lett. 2013, 13, 2564–2569.

    Article  Google Scholar 

  6. Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208–211.

    Article  Google Scholar 

  7. Cui, Y.; Zhong, Z.; Wang, D.; Wang, W. U.; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149–152.

    Article  Google Scholar 

  8. Elibol, O.; Morisette, D.; Akin, D.; Denton, J.; Bashir, R. Integrated nanoscale silicon sensors using top-down fabrication. Appl. Phys. Lett. 2003, 83, 4613–4615.

    Article  Google Scholar 

  9. Yang, C.; Zhong, Z.; Lieber, C. M. Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 2005, 310, 1304–1307.

    Article  Google Scholar 

  10. Tong, H. D.; Chen, S.; van der Wiel, W. G.; Carlen, E. T.; van den Berg, A. Novel top-down wafer-scale fabrication of single crystal silicon nanowires. Nano Lett. 2009, 9, 1015–1022.

    Article  Google Scholar 

  11. Schmidt, V.; Wittemann, J.; Gösele, U. Growth, thermodynamics, and electrical properties of silicon nanowires. Chem. Rev. 2010, 110, 361–388.

    Article  Google Scholar 

  12. McAlpine, M. C.; Ahmad, H.; Wang, D.; Heath, J. R. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 2007, 6, 379–384.

    Article  Google Scholar 

  13. Engel, Y.; Elnathan, R.; Pevzner, A.; Davidi, G.; Flaxer, E.; Patolsky, F. Supersensitive detection of explosives by silicon nanowire arrays. Angew. Chem. Int. Ed. 2010, 49, 6830–6835.

    Article  Google Scholar 

  14. Niskanen, A.; Colli, A.; White, R.; Li, H.; Spigone, E.; Kivioja, J. Silicon nanowire arrays as learning chemical vapour classifiers. Nanotechnology 2011, 22, 295502.

    Article  Google Scholar 

  15. Cao, A.; Sudhölter, E. J.; de Smet, L. C. Silicon nanowirebased devices for gas-phase sensing. Sensors 2013, 14, 245–271.

    Article  Google Scholar 

  16. Paska, Y.; Stelzner, T.; Assad, O.; Tisch, U.; Christiansen, S.; Haick, H. Molecular gating of silicon nanowire field-effect transistors with nonpolar analytes. ACS Nano 2011, 6, 335–345.

    Article  Google Scholar 

  17. Wang, B.; Haick, H. Effect of functional groups on the sensing properties of silicon nanowires toward volatile compounds. ACS Appl. Mater. Interfaces 2013, 5, 2289–2299.

    Article  Google Scholar 

  18. Wang, B.; Cancilla, J. C.; Torrecilla, J. S.; Haick, H. Artificial Sensing Intelligence with Silicon Nanowires for Ultraselective Detection in the Gas Phase. Nano Lett. 2014, 14, 933–938.

    Article  Google Scholar 

  19. Stern, E.; Klemic, J. F.; Routenberg, D. A.; Wyrembak, P. N.; Turner-Evans, D. B.; Hamilton, A. D.; LaVan, D. A.; Fahmy, T. M.; Reed, M. A. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 2007, 445, 519–522.

    Article  Google Scholar 

  20. Park, I.; Li, Z.; Pisano, A. P.; Williams, R. S. Top-down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology 2010, 21, 015501.

    Article  Google Scholar 

  21. Wu, J. M. A room temperature ethanol sensor made from p-type Sb-doped SnO2 nanowires. iNanotechnology 2010, 21, 235501.

    Article  Google Scholar 

  22. Someya, T.; Small, J.; Kim, P.; Nuckolls, C.; Yardley, J. T. Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett. 2003, 3, 877–881.

    Article  Google Scholar 

  23. Mirica, K. A.; Azzarelli, J. M.; Weis, J. G.; Schnorr, J. M.; Swager, T. M. Rapid prototyping of carbon-based chemiresistive gas sensors on paper. Proc. Natl. Acad. Sci. 2013, 110, E3265–3270.

    Article  Google Scholar 

  24. Liang, Y.; Chen, Y.; Wang, T. Low-resistance gas sensors fabricated from multiwalled carbon nanotubes coated with a thin tin oxide layer. Appl. Phys. Lett. 2004, 85, 666–668.

    Article  Google Scholar 

  25. Chen, Y.; Zhu, C.; Wang, T. The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures. Nanotechnology 2006, 17, 3012.

    Article  Google Scholar 

  26. Shalev, G.; Landman, G.; Amit, I.; Rosenwaks, Y.; Levy, I. Specific and label-free femtomolar biomarker detection with an electrostatically formed nanowire biosensor. NPG Asia Mater. 2013, 5, e41.

    Article  Google Scholar 

  27. Cristoloveanu, S.; Blalock, B.; Allibert, F.; Dufrene, B.; Mojarradi, M. The four-gate transistor. In Proceedings of the European Solid-State Device Research Conference. 2002, pp 323–326.

    Google Scholar 

  28. Blalock, B. J.; Cristoloveanu, S.; Dufrene, B. M.; Allibert, F.; Mojarradi, M. M. The multiple-gate MOS-JFET transistor. Int. J. High Speed Electron. Syst. 2002, 12, 511–520.

    Article  Google Scholar 

  29. Balestra, F.; Cristoloveanu, S.; Benachir, M.; Brini, J.; Elewa, T. Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance. IEEE Electron Device Lett. 1987, 8, 410–412.

    Article  Google Scholar 

  30. Grunbaum, E.; Barkay, Z.; Shapira, Y.; Barnham, K.; Bushnell, D.; Ekins-Daukes, N.; Mazzer, M.; Wilshaw, P. The electric field and dopant distribution in p-i-n structures observed by ionisation potential (dopant contrast) microscopy in the HRSEM. In Microscopy of Semiconducting Materials. Cullis, A. G., Hutchison J. L., Eds.; Springer: Berlin Heidelberg, 2005, pp 503–506.

    Chapter  Google Scholar 

  31. Nonnenmacher, M.; Oboyle, M.; Wickramasinghe, H. Kelvin probe force microscopy. Appl. Phys. Lett. 1991, 58, 2921–2923.

    Article  Google Scholar 

  32. Glatzel, T. In Kelvin Probe Force Microscopy. Sadewasser, S., Glatzel, T., Eds.; Springer Series in Surface Sciences; Springer: Berlin Heidelberg, 2011, pp 289–327.

    Google Scholar 

  33. Koren, E.; Rosenwaks, Y.; Allen, J.; Hemesath, E.; Lauhon, L. Nonuniform doping distribution along silicon nanowires measured by Kelvin probe force microscopy and scanning photocurrent microscopy. Appl. Phys. Lett. 2009, 95, 092105.

    Article  Google Scholar 

  34. Shaya, O.; Shaked, M.; Usherenko, Y.; Halpern, E.; Shalev, G.; Doron, A.; Levy, I.; Rosenwaks, Y. Tracing the mechanism of molecular gated transistors. J. Phys. Chem. C 2009, 113, 6163–6168.

    Google Scholar 

  35. Masetti, G.; Severi, M.; Solmi, S. Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon. IEEE Trans. Electron Devices 1983, 30, 764–769.

    Article  Google Scholar 

  36. Palik, E. D. Handbook of Optical Constants of Solids. Academic press, 1998, Vol. 3.

  37. Kikukawa, A.; Hosaka, S.; Imura, R. Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy. Appl. Phys. Lett. 1995, 66, 3510–3512.

    Article  Google Scholar 

  38. Glatzel, T.; Sadewasser, S.; Lux-Steiner, M. C. Amplitude or frequency modulation-detection in Kelvin probe force microscopy. Appl. Surf. Sci. 2003, 210, 84–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yossi Rosenwaks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henning, A., Swaminathan, N., Godkin, A. et al. Tunable diameter electrostatically formed nanowire for high sensitivity gas sensing. Nano Res. 8, 2206–2215 (2015). https://doi.org/10.1007/s12274-015-0730-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0730-1

Keywords

Navigation