Skip to main content
Log in

Raman microscopy mapping for the purity assessment of chirality enriched carbon nanotube networks in thin-film transistors

Nano Research Aims and scope Submit manuscript

Abstract

With recent improvements in carbon nanotube separation methods, the accurate determination of residual metallic carbon nanotubes in a purified nanotube sample is important, particularly for those interested in using semiconducting single-walled carbon nanotubes (SWCNTs) in electronic device applications such as thin-film transistors (TFTs). This work demonstrates that Raman microscopy mapping is a powerful characterization tool for quantifying residual metallic carbon nanotubes present in highly enriched semiconducting nanotube networks. Raman mapping correlates well with absorption spectroscopy, yet it provides greater differentiation in purity. Electrical data from TFTs with channel lengths of 2.5 and 5 µm demonstrate the utility of the method. By comparing samples with nominal purities of 99.0% and 99.8%, a clear differentiation can be made when evaluating the current on/off ratio as a function of channel length, and thus the Raman mapping method provides a means to guide device fabrication by correlating SWCNT network density and purity with TFT channel scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Avouris, P. Molecular electronics with carbon nanotubes. Acc. Chem. Res. 2002, 35, 1026–1034.

    Article  Google Scholar 

  2. De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

    Article  Google Scholar 

  3. Noorden, R. V. The trials of new carbon. Nature 2011, 469, 14–16.

    Article  Google Scholar 

  4. Zhang, H. L.; Wu, B.; Hu, W. P.; Liu, Y. Q. Separation and/or selective enrichment of single-walled carbon nanotubes based on their electronic properties. Chem. Soc. Rev. 2011, 40, 1324–1336.

    Article  Google Scholar 

  5. Wang, C.; Takei, K.; Takahashi, T.; Javey, A. Carbon nanotube electronics-moving forward. Chem. Soc. Rev. 2013, 42, 2592–2609.

    Article  Google Scholar 

  6. Lu, F. S.; Meziani, M. J.; Cao, L.; Sun, Y. P. Separated metallic and semiconducting single-walled carbon nanotubes: Opportunities in transparent electrodes and beyond. Langmuir 2011, 27, 4339–4350.

    Article  Google Scholar 

  7. Liu, Z. F.; Jiao, L. Y.; Yao, Y. G.; Xian, X. J.; Zhang, J. Aligned, ultralong single-walled carbon nanotubes: From synthesis, sorting, to electronic devices. Adv. Mater. 2010, 22, 2285–2310.

    Article  Google Scholar 

  8. Park, S.; Vosguerichian, M.; Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 2013, 5, 1727–1752.

    Article  Google Scholar 

  9. Rouhi, N.; Jain, D.; Burke, P. J. High-performance semiconducting nanotube inks: Progress and prospects. ACS Nano 2011, 5, 8471–8487.

    Article  Google Scholar 

  10. Sun, D. M.; Liu, C.; Ren, W. C.; Cheng, H. M. A review of carbon nanotube-and graphene-based flexible thin-film transistors. Small 2013, 9, 1188–1205.

    Article  Google Scholar 

  11. Mistry, K. S.; Larsen, B. A.; Blackburn, J. L. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano 2013, 7, 2231–2239.

    Article  Google Scholar 

  12. Itkis, M. E.; Perea, D. E.; Jung, R.; Niyogi, S.; Haddon, R. C. Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 3439–3448.

    Article  Google Scholar 

  13. Itkis, M. E.; Perea, D. E.; Niyogi, S.; Rickard, S. M.; Hamon, M. A.; Hu, H.; Zhao, B.; Haddon, R. C. Purity evaluation of as-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy. Nano Lett. 2003, 3, 309–314.

    Article  Google Scholar 

  14. Gomulya, W.; Costanzo, G. D.; Figueiredo de Carvalho, E. J.; Bisri, S. Z.; Derenskyi, V.; Fritsch, M.; Fröhlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A.; et al. A. Semiconducting single-walled carbon nanotubes on demand by polymer wrapping. Adv. Mater. 2013, 25, 2948–2956.

    Article  Google Scholar 

  15. Ding, J. F.; Li, Z.; Lefebvre, J.; Cheng, F. Y.; Dubey, G.; Zou, S.; Finnie, P.; Hrdina, A.; Scoles, L.; Lopinski, G.; et al. Enrichment of large-diameter semiconducting SWCNTs by polyfluorene extraction for high network density thin film transistors. Nanoscale 2014, 6, 2328–2339.

    Article  Google Scholar 

  16. Tange, M.; Okazaki, T.; Iijima, S. Selective extraction of largediameter single-wall carbon nanotubes with specific chiral indices by Poly (9,9-dioctylfluorene-alt-benzothiadiazole). J. Am. Chem. Soc. 2011, 133, 11908–11911.

    Article  Google Scholar 

  17. Naumov, A. V.; Ghosh, S.; Tsyboulski, D. A.; Bachilo, S. M. Weisman, R. B. Analyzing absorption backgrounds in single-walled carbon nanotube spectra. ACS Nano 2011, 5, 1639–1648.

    Article  Google Scholar 

  18. LeMieux, M. C.; Roberts, M.; Barman, S.; Jin, Y. W.; Kim, J. M.; Bao, Z. Self-sorted, aligned nanotube networks for thin-film transistors. Science 2008, 321, 101–104.

    Article  Google Scholar 

  19. Gao, M.; Zuo, J. M.; Twesten, R. D.; Petrov, I.; Nagahara, L. A.; Zhang, R. Structure determination of individual singlewall carbon nanotubes by nano area electron diffraction. Appl. Phys. Lett. 2003, 82, 2703–2705.

    Article  Google Scholar 

  20. Qin, L. C.; Iijima, S.; Kataura, H.; Maniwa, Y.; Suzuki, S.; Achiba, Y. Helicity and packing of single-walled carbon nanotubes studied by electron nanodiffraction. Chem. Phys. Lett. 1997, 268, 101–106.

    Article  Google Scholar 

  21. Wildöer, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391, 59–62.

    Article  Google Scholar 

  22. Lu, W.; Xiong, Y.; Hassanien, A.; Zhao, W.; Zheng, M.; Chen, L. A Scanning probe microscopy based assay for single-walled carbon nanotube metallicity. Nano Lett. 2009, 9, 1668–1672.

    Article  Google Scholar 

  23. Vijayaraghavan, A.; Blatt, S.; Marquardt, C.; Dehm, S.; Wahi R. Hennrich, F.; Krupke, R. Imaging electronic structure of carbon nanotubes by voltage-contrast scanning electron microscopy. Nano Res. 2008, 1, 321–332.

    Article  Google Scholar 

  24. Vijayaraghavan, A.; Hennrich, F.; Stürzl, N.; Engel, M.; Ganzhorn, M.; Oron-Carl, M.; Marquardt, C. W.; Dehm, S.; Lebedkin, S.; Kappes, M. M.; et al. Toward single-chirality carbon nanotube device arrays. ACS Nano 2010, 4, 2748–2754.

    Article  Google Scholar 

  25. Li, Y. Y.; Mann, D.; Rolandi, M.; Kim, W.; Ural, A.; Hung, S.; Javey, A.; Cao, J.; Wang, D. W.; Yenilmez, E.; et al. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 2004, 4, 317–321.

    Article  Google Scholar 

  26. Park, H.; Afzali, A.; Han, S.-J.; Tulevski, G. S.; Franklin, A. D.; Tersoff, J.; Hannon, J. B.; Haensch, W. High-density integration of carbon nanotubes via chemical self-assembly. Nat. Nanotechnol. 2012, 7, 787–791.

    Article  Google Scholar 

  27. Tulevski, G. S.; Franklin, A. D.; Afzali, A. High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography. ACS Nano 2013, 7, 2971–2976.

    Article  Google Scholar 

  28. Naumov, A. V.; Kuznetsov, O. A.; Harutyunyan, A. R.; Green, A. A.; Hersam, M. C.; Resasco, D. E.; Nikolaev, P. N.; Weisman, R. B. Quantifying the semiconducting fraction in single-walled carbon nanotube samples through comparative atomic force and photoluminescence microscopies. Nano Lett. 2009, 9, 3203–3208.

    Article  Google Scholar 

  29. Jorio, A.; Pimenta, M. A.; Souza Filho, A. G.; Saito, R.; Dresselhaus, G.; Dresselhaus. M. S. Characterizing carbon nanotube samples with resonance Raman scattering. New J. Phys. 2003, 5, 139.

    Article  Google Scholar 

  30. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.

    Article  Google Scholar 

  31. Saito, R.; Hofmann, M.; Dresselhaus, G.; Jorio, A.; Dresselhaus, M. S. Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 2011, 60, 413–550.

    Article  Google Scholar 

  32. Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758.

    Article  Google Scholar 

  33. Thomsen, C.; Reich, S. Raman scattering in carbon nanotubes. Top. Appl. Phys. 2007, 108, 115–232.

    Article  Google Scholar 

  34. Kaminska, K.; Lefebvre, J.; Austing, D. G.; Finnie, P. Realtime global Raman imaging and optical manipulation of suspended carbon nanotubes. Phy. Rev. B 2006, 73, 235410.

    Article  Google Scholar 

  35. Finnie, P.; Ding, J.; Li. Z.; Kingston, C. T. Assessment of the metallicity of single-wall carbon nanotube ensembles at high purities. J. Phys. Chem C 2014, 118, 30127–30138.

    Google Scholar 

  36. Dresselhaus, M. S.; Dresselhaus. G.; Jorio, A.; Souza Filho, A. G.; Pimenta, M. A.; Saito, R. Single nanotube Raman spectroscopy. Acc. Chem. Res. 2002, 35, 1070–1078.

    Article  Google Scholar 

  37. Doorn, S. K.; Heller, D. A.; Barone, P. W.; Usrey, M. L.; Strano, M. S. Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution. Appl. Phys. A 2004, 78, 1147–1155.

    Article  Google Scholar 

  38. Hennrich, F.; Krupke, R.; Lebedkin, S.; Arnold, K.; Fischer, R.; Resasco, D. E.; Kappes, M. M. Raman spectroscopy of individual single-walled carbon nanotubes from various sources. J. Phys. Chem. B 2005, 109, 10567–10573.

    Article  Google Scholar 

  39. Samsonidze, G.; Chou, S. G.; Santos, A. P.; Brar, V. W.; Dresselhaus, G.; Dresselhaus, M. S.; Selbst, A.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; et al. Quantitative evaluation of the octadecylamine-assisted bulk separation of semiconducting and metallic single-wall carbon nanotubes by resonance Raman spectroscopy. Appl. Phys. Lett. 2004, 85, 1006–1008.

    Article  Google Scholar 

  40. Paillet, M.; Michel, T.; Zahab, A.; Nakabayashi, D.; Jourdain, V.; Parret, R.; Meyer, J.; Sauvajol, J. L. Probing the structure of single-walled carbon nanotubes by resonant Raman scattering. Phys. Status Solidi B 2010, 247, 2762–2767.

    Article  Google Scholar 

  41. Maultzsch, J.; Telg, H.; Reich, S.; Thomsen, C. Radial breathing mode of single-walled carbon nanotubes: optical transition energies and chiral-index assignment. Phys. Rev. B, 2005, 72, 205438.

    Article  Google Scholar 

  42. Wu, J.; Xie, L.; Hong, G.; Lim, H. E.; Thendie, B.; Miyata, Y.; Shinohara, H.; Dai, H. Short channel field-effect transistors from highly enriched semiconducting carbon nanotubes. Nano Res. 2012, 5, 388–394.

    Article  Google Scholar 

  43. Jungen, A.; Popov, V. N.; Stampfer, C.; Durrer, L.; Stoll, S.; Hierold, C. Raman intensity mapping of single-walled carbon nanotubes. Phys. Rev. B 2007, 75, 041405.

    Article  Google Scholar 

  44. Jorio, A.; Santos, A. P.; Ribeiro, H. B.; Fantini, C.; Souza, M.; Vieira, J. P. M.; Furtado, C. A.; Jiang, J.; Saito, R.; Balzano, L.; Resasco, D. E.; Pimenta, M. A. Quantifying carbonnanotube species with resonance Raman scattering. Phys. Rev. B 2005, 72, 075207.

    Article  Google Scholar 

  45. Chattopadhyay, D.; Galeska, I.; Papadimitrakopoulos, F. A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J. Am. Chem. Soc. 2003, 125, 3370–3375.

    Article  Google Scholar 

  46. Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett. 2003, 3, 1235–1238.

    Article  Google Scholar 

  47. Duarte, A. S.; Rehbinder, J.; Correia, R. R. B.; Buckup, T.; Motzkus, M. Mapping impurity of dingle-walled carbon nanotubes in bulk samples with multiplex coherent anti-Stokes Raman microscopy. Nano Lett. 2013, 13, 697–702.

    Article  Google Scholar 

  48. Pimenta, M. A.; Marucci, A.; Empedocles, S. A.; Bawendi, M. G.; Hanlon, E. B.; Rao, A. M.; Eklund, P. C.; Smalley, R. E.; Dresselhaus, G.; Dresselhaus, M. S. Raman modes of metallic carbon nanotubes. Phys. Rev. B 1998, 58, R16016–16019.

    Article  Google Scholar 

  49. Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Pimenta, M. A.; Hafner, J. H.; Lieber, C. M.; et al. G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys. Rev. B 2002, 65, 155412.

    Article  Google Scholar 

  50. Hároz, E. H.; Duque, J. G.; Rice, W. D.; Densmore, C. G.; Kono, J.; Doorn, S. K. Resonant Raman spectroscopy of armchair carbon nanotubes: absence of broad G-feature. Phys. Rev. B 2011, 84, 121403.

    Article  Google Scholar 

  51. Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S. J.; Hannon, J. B.; Haensch, W. Toward High-performance digital logic technology with carbon nanotubes. ACS Nano, 2014, 8, 8730–8745.

    Article  Google Scholar 

  52. Brady, G. J.; Joo, Y.; Roy, S. S.; Gopalan, P.; Arnold, M. S. High performance transistors via aligned polyfluorene-sorted carbon nanotubes. Appl. Phys. Lett. 2014, 104, 083107.

    Article  Google Scholar 

  53. Yao, J.; Yan, H.; Lieber, C. M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 2013, 8, 329–335.

    Article  Google Scholar 

  54. Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of singlewalled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.

    Article  Google Scholar 

  55. Nougaret, L; Happy, H.; Dambrine, G.; Derycke, V.; Bourgoin, J. P.; Green, A. A; Hersam, M. C. 80 GHz field-effect transistors produced using high purity semiconducting single walled carbon nanotubes. Appl. Phys. Lett. 2009, 94, 243505.

    Article  Google Scholar 

  56. Lau, P. H.; Takei, K.; Wang, C.; Ju, Y.; Kim, J.; Yu, Z.; Takahashi, T.; Cho, G.; Javey, A. Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett. 2013, 13, 3864–3869.

    Article  Google Scholar 

  57. Liu, Z.; Zhao, J. W.; Xu, W. Y.; Qian, L.; Nie, S. H.; Cui, Z. Effect of surface wettability properties on the electrical properties of printed carbon nanotube thin-film transistors on SiO2/Si Substrates. ACS Appl. Mater. Interfaces 2014, 6, 9997–10004.

    Article  Google Scholar 

  58. Kim, B; Jang, S; Geier, M. L.; Prabhumirashi, P. L.; Hersam, M. C.; Dodabalapur, A. High-speed, inkjet-printed carbon nanotube/zinc tin oxide hybrid complementary ring oscillators. Nano Lett. 2014, 14, 3683–3687.

    Article  Google Scholar 

  59. Chen, H. T.; Cao, Y.; Zhang, J. L.; Zhou, C. W. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 2014, 5, 4097.

    Google Scholar 

  60. Chen, P.; Fu, Y.; Aminirad, R.; Wang, C.; Zhang, J.; Wang, K.; Galatsis, K.; Zhou, C. W. Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. Nano Lett. 2011, 11, 5301–5308.

    Article  Google Scholar 

  61. Xu, W. Y.; Zhao, J. W.; Qian, L.; Han, X. Y.; Wu, L. Z.; Wu, W. C.; Song, M. S.; Zhou, L.; Su, W. M.; Wang, C.; et al. Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED) Nanoscale, 2014, 6, 1589–1595.

    Google Scholar 

  62. Jung, M.; Kim, J.; Koo, H.; Lee, W.; Subramanian, V.; Cho, G. Roll-to-Roll gravure with nanomaterials for printing smart packaging. J. Nanosci. Nanotechnol. 2014, 14, 1303–1317.

    Article  Google Scholar 

  63. Jung, M. H.; Kim, J.; Noh, J.; Lim, N.; Lim, C.; Lee, G.; Kim, J.; Kang, H.; Jung, K.; Leonard, A.; et al. All-printed and roll-to-roll-printable 13.56 MHz-operated 1-bit RF tag on plastic foils. IEEE Trans. Elec. 2010, 57, 571–580.

    Article  Google Scholar 

  64. Kiriya, D.; Chen, K.; Ota, H.; Lin, Y. J.; Zhao, P. D.; Yu, Z. B.; Ha, T.-J.; Javey, A. Design of surfactant–substrate interactions for roll-to-roll assembly of carbon nanotubes for thin-film transistors J. Am. Chem. Soc. 2014, 136, 11188–11194.

    Article  Google Scholar 

  65. Cao, X.; Chen, H. T.; Gu, X. F.; Liu, B. L.; Wang, W. L.; Cao, Y.; Wu, F. Q.; Zhou, C. W. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes. ACS Nano 2014, 8, 12769–12776.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao Li or Patrick R. L. Malenfant.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Ding, J., Finnie, P. et al. Raman microscopy mapping for the purity assessment of chirality enriched carbon nanotube networks in thin-film transistors. Nano Res. 8, 2179–2187 (2015). https://doi.org/10.1007/s12274-015-0725-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0725-y

Keywords

Navigation