Skip to main content
Log in

Serum-induced degradation of 3D DNA box origami observed with high-speed atomic force microscopy

Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 15 September 2015

Abstract

3D DNA origami holds tremendous potential for the encapsulation and selective release of therapeutic drugs. Observations of the real-time performance of these structures in physiological environments will contribute to the development of future applications. We investigated the degradation kinetics of 3D DNA box origami in serum by using high-speed atomic force microscope optimized for imaging 3D DNA origami in real time. The time resolution allowed to characterize the stages of serum effects on individual 3D DNA boxes origami with nanometer resolution. Our results indicate that the digestion process is a combination of rapid collapse and slow degradation phases. Damage to box origami occurs mainly in the collapse phase. Thus, the structural stability of 3D DNA box origami should be improved, especially in the collapse phase, before these structures are used in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Andersen, E. S.; Dong, M. D.; Nielsen, M. M.; Jahn, K.; Lind-Thomsen, A.; Mamdouh, W.; Gothelf, K. V.; Besenbacher, F.; Kjems, J. DNA origami design of dolphinshaped structures with flexible tails. ACS Nano 2008, 2, 1213–1218.

    Article  Google Scholar 

  2. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.

    Article  Google Scholar 

  3. Tørring, T.; Voigt, N. V.; Nangreave, J.; Yan, H.; Gothelf, K. V. DNA origami: A quantum leap for self-assembly of complex structures. Chem. Soc. Rev. 2011, 40, 5636–5646.

    Article  Google Scholar 

  4. Tørring, T.; Helmig, S.; Ogilby, P. R.; Gothelf, K. V. Singlet oxygen in DNA nanotechnology. Acc. Chem. Res. 2014, DOI:10.1021/ar500034y.

    Google Scholar 

  5. Wei, B.; Dai, M. J.; Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 2012, 485, 623–626.

    Article  Google Scholar 

  6. Han, D. R.; Pal, S.; Nangreave, J.; Deng, Z. T.; Liu, Y.; Yan, H. DNA origami with complex curvatures in three-dimensional space. Science 2011, 332, 342–346.

    Article  Google Scholar 

  7. Ke, Y. G.; Ong, L. L.; Shih, W. M.; Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 2012, 338, 1177–1183.

    Article  Google Scholar 

  8. Steinhauer, C.; Jungmann, R.; Sobey, T. L.; Simmel, F. C.; Tinnefeld, P. DNA origami as a nanoscopic ruler for superresolution microscopy. Angew. Chem. Int. Ed. 2009, 48, 8870–8873.

    Article  Google Scholar 

  9. Deng, Z. T.; Pal, S.; Samanta, A.; Yan, H.; Liu, Y. DNA functionalization of colloidal II-VI semiconductor nanowires for multiplex nanoheterostructures. Chem. Sci. 2013, 4, 2234–2240.

    Article  Google Scholar 

  10. Maune, H. T.; Han, S. P.; Barish, R. D.; Bockrath, M.; Goddard, W. A.; Rothemund, P. W. K.; Winfree, E. Selfassembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol. 2010, 5, 61–66.

    Article  Google Scholar 

  11. Subramani, R.; Juul, S.; Rotaru, A.; Andersen, F. F.; Gothelf, K. V.; Mamdouh, W.; Besenbacher, F.; Dong, M. D.; Knudsen, B. R. A novel secondary DNA binding site in human topoisomerase I unravelled by using a 2D DNA origami platform. ACS Nano 2010, 4, 5969–5977.

    Article  Google Scholar 

  12. Ke, Y. G.; Sharma, J.; Liu, M. H.; Jahn, K.; Liu, Y.; Yan, H. Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett. 2009, 9, 2445–2447.

    Article  Google Scholar 

  13. Zadegan, R. M.; Jepsen, M. D. E.; Thomsen, K. E.; Okholm, A. H.; Schaffert, D. H.; Andersen, E. S.; Birkedal, V.; Kjems, J. Construction of a 4 zeptoliters switchable 3D DNA box origami. ACS Nano 2012, 6, 10050–10053.

    Article  Google Scholar 

  14. Hung, A. M.; Micheel, C. M.; Bozano, L. D.; Osterbur, L. W.; Wallraff, G. M.; Cha, J. N. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat. Nanotechnol. 2010, 5, 121–126.

    Article  Google Scholar 

  15. Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 2009, 459, 73–76.

    Article  Google Scholar 

  16. Keum, J.-W.; Bermudez, H. Enhanced resistance of DNA nanostructures to enzymatic digestion. Chem. Commun. 2009, DOI:10.1039/b917661f.

    Google Scholar 

  17. Walsh, A. S.; Yin, H. F.; Erben, C. M.; Wood, M. J. A.; Turberfield, A. J. DNA cage delivery to mammalian cells. ACS Nano 2011, 5, 5427–5432.

    Article  Google Scholar 

  18. Li, J.; Pei, H.; Zhu, B.; Liang, L.; Wei, M.; He, Y.; Chen, N.; Li, D.; Huang, Q.; Fan, C. H. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 2011, 5, 8783–8789.

    Article  Google Scholar 

  19. Fu, J. L.; Yan, H. Controlled drug release by a nanorobot. Nat. Biotech. 2012, 30, 407–408.

    Article  Google Scholar 

  20. Schreiber, R.; Kempter, S.; Holler, S.; Schuller, V.; Schiffels, D.; Simmel, S. S.; Nickels, P. C.; Liedl, T. DNA origami-templated growth of arbitrarily shaped metal nanoparticles. Small 2011, 7, 1795–1799.

    Article  Google Scholar 

  21. Li, Z.; Liu, M. H.; Wang, L.; Nangreave, J.; Yan, H.; Liu, Y. Molecular behavior of DNA origami in higher-order self-assembly. J. Am. Chem. Soc. 2010, 132, 13545–13552.

    Article  Google Scholar 

  22. Helmig, S.; Rotaru, A.; Arian, D.; Kovbasyuk, L.; Arnbjerg, J.; Ogilby, P. R.; Kjems, J.; Mokhir, A.; Besenbacher, F.; Gothelf, K. V. Single molecule atomic force microscopy studies of photosensitized singlet oxygen behavior on a DNA origami template. ACS Nano 2010, 4, 7475–7480.

    Article  Google Scholar 

  23. Liu, J. F.; Geng, Y. L.; Pound, E.; Gyawali, S.; Ashton, J. R.; Hickey, J.; Woolley, A. T.; Harb, J. N. Metallization of branched DNA origami for nanoelectronic circuit fabrication. ACS Nano 2011, 5, 2240–2247.

    Article  Google Scholar 

  24. Ding, B. Q.; Deng, Z. T.; Yan, H.; Cabrini, S.; Zuckermann, R. N.; Bokor, J. Gold nanoparticle self-similar chain structure organized by DNA origami. J. Am. Chem. Soc. 2010, 132, 3248–3249.

    Article  Google Scholar 

  25. Mo, Y. F.; Turner, K. T.; Szlufarska, I. Friction laws at the nanoscale. Nature 2009, 457, 1116–1119.

    Article  Google Scholar 

  26. Mei, Q. A.; Wei, X. X.; Su, F. Y.; Liu, Y.; Youngbull, C.; Johnson, R.; Lindsay, S.; Yan, H.; Meldrum, D. Stability of DNA origami nanoarrays in cell lysate. Nano Lett. 2011, 11, 1477–1482.

    Article  Google Scholar 

  27. Conway, J. W.; McLaughlin, C. K.; Castor, K. J.; Sleiman, H. DNA nanostructure serum stability: Greater than the sum of its parts. Chem. Commun. 2013, 49, 1172–1174.

    Article  Google Scholar 

  28. Song, J.; Zhang, Z.; Zhang, S.; Liu, L.; Li, Q.; Xie, E. Q.; Gothelf, K. V.; Besenbacher, F.; Dong, M. D. Isothermal hybridization kinetics of DNA assembly of two-dimensional DNA origami. Small 2013, 9, 2954–2959.

    Article  Google Scholar 

  29. Song, J.; Arbona, J.-M.; Zhang, Z.; Liu, L.; Xie, E. Q.; Elezgaray, J.; Aime, J.-P.; Gothelf, K. V.; Besenbacher, F.; Dong, M. D. Direct visualization of transient thermal response of a DNA origami. J. Am. Chem. Soc. 2012, 134, 9844–9847.

    Article  Google Scholar 

  30. Ando, T.; Uchihashi, T.; Fukuma, T. High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog. Surf. Sci. 2008, 83, 337–437.

    Article  Google Scholar 

  31. Ando, T.; Kodera, N.; Takai, E.; Maruyama, D.; Saito, K.; Toda, A. A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl. Acad. Sci. 2001, 98, 12468–12472.

    Article  Google Scholar 

  32. Rajendran, A.; Endo, M.; Hidaka, K.; Sugiyama, H. Direct and real-time observation of rotary movement of a DNA nanomechanical device. J. Am. Chem. Soc. 2013, DOI:10.1021/ja310454k.

    Google Scholar 

  33. Endo, M.; Katsuda, Y.; Hidaka, K.; Sugiyama, H. Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. J. Am. Chem. Soc. 2010, 132, 1592–1597.

    Article  Google Scholar 

  34. Sannohe, Y.; Endo, M.; Katsuda, Y.; Hidaka, K.; Sugiyama, H. Visualization of dynamic conformational switching of the G-quadruplex in a DNA nanostructure. J. Am. Chem. Soc. 2010, 132, 16311–16313.

    Article  Google Scholar 

  35. Rajendran, A.; Endo, M.; Hidaka, K.; Sugiyama, H. Direct and real-time observation of rotary movement of a DNA nanomechanical device. J. Am. Chem. Soc. 2013, 135, 1117–1123.

    Article  Google Scholar 

  36. Fantner, G. E.; Barbero, R. J.; Gray, D. S.; Belcher, A. M. Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nat. Nanotechnol. 2010, 5, 280–285.

    Article  Google Scholar 

  37. Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 2009, 459, 73–76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingdong Dong.

Additional information

These authors contributed equally to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Zhang, S., Yang, C. et al. Serum-induced degradation of 3D DNA box origami observed with high-speed atomic force microscopy. Nano Res. 8, 2170–2178 (2015). https://doi.org/10.1007/s12274-015-0724-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0724-z

Keywords

Navigation