Skip to main content
Log in

Performance enhancement of perovskite-sensitized mesoscopic solar cells using Nb-doped TiO2 compact layer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Perovskite solar cells are one of the most promising alternatives to conventional photovoltaic devices, and extensive studies are focused on device optimization to further improve their performance. A compact layer of TiO2 is generally used in perovskite solar cells to block holes from reaching the fluorine-doped tin oxide electrode. In this contribution, we engineered a TiO2 compact layer using Nb doping, which resulted in solar cells with a power conversion efficiency (PCE) of 10.26%, which was higher than that of devices with the same configuration but containing a pristine TiO2 compact layer (PCE = 9.22%). The device performance enhancement was attributed to the decreased selective contact resistance and increased charge recombination resistance resulting from Nb doping, which was revealed by the impedance spectroscopy measurements. The developed strategy highlights the importance of interface optimization for perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science 2012, 338, 643–647.

    Article  Google Scholar 

  2. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

    Google Scholar 

  3. Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

    Article  Google Scholar 

  4. Liu, M., Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398.

    Article  Google Scholar 

  5. Park, N. G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 2013, 4, 2423–2429.

    Article  Google Scholar 

  6. Snaith, H. J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 2013, 4, 3623–3630.

    Article  Google Scholar 

  7. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

    Article  Google Scholar 

  8. Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

    Article  Google Scholar 

  9. Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater. 2014, 13, 838–842.

    Article  Google Scholar 

  10. Christians, J.A.; Fung, R. C. M.; Kamat, P. V. An inorganic hole conductor for organo-lead halide perovskite solar cells improved hole conductivity with copper iodide. J. Am. Chem. Soc. 2014, 136, 758–764.

    Article  Google Scholar 

  11. Bai, S.; Wu, Z. W.; Wu, X. J.; Jin, Y. Z.; Zhao, N.; Chen, Z. H.; Mei, Q. Q.; Wang, X.; Ye, Z. Z. et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res. 2014, 7, 1749–1758.

    Article  Google Scholar 

  12. Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Efficient organometal trihalide perovskite planarheterojunction solar cells on flexible polymer substrates. Nat. Commun. 2013, 4, 2761.

    Article  Google Scholar 

  13. Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. Mesoscopic CH3NH3PbI3/ TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399.

    Article  Google Scholar 

  14. Zhu, L. F.; Xiao, J. Y.; Shi, J. J.; Wang, J. J.; Lv, S. T.; Xu, Y. Z.; Liu, Y. H.; Xiao, Y.; Wang, S. R.; Meng, Q. B. et al. Efficient CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP hole-transporting layers. Nano Res. 2015, DOI:10.1007/s12274-014-0592-y.

    Google Scholar 

  15. Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y. et al. Hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–298.

    Article  Google Scholar 

  16. Snaith, H. J.; Grätzel, M. The role of a “Schottky barrier” at an electron-collection electrode in solid-state dye-sensitized solar cells. Adv. Mater. 2006, 18, 1910–1914.

    Article  Google Scholar 

  17. Ruiz, A. M.; Dezanneau, G.; Arbiol, J.; Cornet, A.; Morante, J. R. Insights into the structural and chemical modifications of Nb additive on TiO2 Nanoparticles. Chem. Mater. 2004, 16, 862–871.

    Article  Google Scholar 

  18. Sato, Y.; Akizuki, H.; Kamiyama, T.; Shigesato, Y. Transparent conductive Nb-doped TiO2 films deposited by direct-current magnetron sputtering using a TiO2−x target. Thin Solid Films, 2008, 516, 5758–5762.

    Article  Google Scholar 

  19. Peng, B.; Jungmann, G.; Jäger, C.; Haarer, D.; Schmidt, H. W.; Thelakkat, M. Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells. Coord. Chem. Rev. 2004, 248, 1479–1489.

    Article  Google Scholar 

  20. Zhang, W.; Cheng, Y. M.; Yin, X.; Liu, B. Solid-state dyesensitized solar cells with conjugated polymers as hole-transporting materials. Macromol. Chem. Phys. 2011, 212, 15–23.

    Article  Google Scholar 

  21. Xue, Z. S.; Jiang, C. Y.; Wang, L.; Liu, W.; Liu, B. Fabrication of flexible plastic solid-state dye-sensitized solar cells using low temperature techniques. J. Phys. Chem. C 2014, 118, 16352–16357.

    Article  Google Scholar 

  22. Kim, H. S.; Mora-Sero, I.; Gonzalez-Pedro, V.; Fabregat-Santiago, F.; Juarez-Perez, E. J.; Park, N. G.; Bisquert, J. Mechanism of carrier accumulation in perovskite thinabsorber solar cells. Nat. Commun. 2013, 4, 2242.

    Google Scholar 

  23. Fabregat-Santiago, F.; Garcia-Belmonte, G.; Bisquert, J.; Zaban, A.; Salvador, P. Decoupling of transport, charge storage, and interfacial charge transfer in the nanocrystalline TiO2/electrolyte system by impedance methods. J. Phys. Chem. B 2002, 106, 334–339.

    Article  Google Scholar 

  24. Luber, E. J.; Buriak, J. M. Reporting performance in organic photovoltaic devices. ACS Nano 2013, 7, 4708–4714.

    Article  Google Scholar 

  25. Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B. et al. Lead-free organicinorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068.

    Article  Google Scholar 

  26. Juarez-Perez, E. J.; Wuβler, M.; Fabregat-Santiago, F.; Lakus-Wollny, K.; Mankel, E.; Mayer, T.; Jaegermann, W.; Mora-Sero, I. Role of the selective contacts in the performance of lead halide perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 680–685.

    Article  Google Scholar 

  27. Gonzalez-Pedro, V.; Juarez-Perez, E. J.; Arsyad, W. A.; Barea, E. M.; Fabregat-Santiago, F.; Mora-Sero, I.; Bisquert, J. General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett. 2014, 14, 888–893.

    Article  Google Scholar 

  28. Dualeh, A.; Moehl, T.; Tétreault, N.; Teuscher, J.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 2014, 8, 362–373.

    Article  Google Scholar 

  29. Peng, S. J.; Shi, J. F.; Pei, J.; Liang, Y. L.; Cheng, F. Y.; Liang, J.; Chen, J. Ni1−x Ptx (x = 0–0.08) Films as the photocathode of dye-sensitized solar cells with high efficiency. Nano Res. 2009, 2, 484–492.

    Article  Google Scholar 

  30. Yin, X.; Wang, B.; He, M.; He, T. Facile synthesis of ZnO nanocrystals via a solid state reaction for high performance plastic dye-sensitized solar cells. Nano Res. 2012, 5, 1–10.

    Article  Google Scholar 

  31. Thapa, A.; Zai, J. T.; Elbohy, H.; Poudel, P.; Adhikari, N.; Qian, X. F.; Qiao, Q. Q. TiO2 coated urchin-like SnO2 microspheres for efficient dye-sensitized solar cells. Nano Res. 2014, 7, 1154–1163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng He or Bin Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Guo, Y., Xue, Z. et al. Performance enhancement of perovskite-sensitized mesoscopic solar cells using Nb-doped TiO2 compact layer. Nano Res. 8, 1997–2003 (2015). https://doi.org/10.1007/s12274-015-0711-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0711-4

Keywords

Navigation