Skip to main content
Log in

Quantitative measurement of the mechanical properties of human antibodies with sub-10-nm resolution in a liquid environment

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The nanomechanical properties of single human immunoglobulin G and M antibodies were measured in a liquid environment using a fast force-volume technique with sub-10-nm spatial resolution. The ultrastructural details of these molecules were resolved in the images. Simultaneously, important physical properties, including elasticity, adhesion, and deformation were measured. The dimensions and adsorption of the immunoglobulin M antibodies onto the substrate indicated that they are highly flexible. The antibodies were characterized by a low elastic stiffness (34 ± 10 MPa) and high deformability (1.5 ± 0.5 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mammen, M.; Choi, S. K.; Whitesides, G. M. Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 1998, 37, 2754–2794.

    Article  Google Scholar 

  2. Saphire, E. O.; Stanfield, R. L.; Crispin, M. D. M.; Parren, P.; Rudd, P. M.; Dwek, R. A.; Burton, D. R.; Wilson, I. A. Contrasting IgG structures reveal extreme asymmetry and flexibility. J. Mol. Biol. 2002, 319, 9–18.

    Article  Google Scholar 

  3. Sandin, S.; Öfverstedt, L. G.; Wikström, A. C.; Wrange, Ö.; Skoglund, U. Structure and flexibility of individual immunoglobulin G molecules in solution. Structure 2004, 12, 409–415.

    Article  Google Scholar 

  4. Szenczi, A.; Kardos, J.; Medgyesi, G. A.; Zavodszky, P. The effect of solvent environment on the conformation and stability of human polyclonal IgG in solution. Biologicals 2006, 34, 5–14.

    Article  Google Scholar 

  5. Ando, T.; Kodera, N.; Takai, E.; Maruyama, D.; Saito, K.; Toda, A. A high-speed atomic force microscope for studying biological macromolecules. P. Natl. Acad. Sci. USA 2001, 98, 12468–12472.

    Article  Google Scholar 

  6. Engel, A.; Muller, D. J. Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol. 2000, 7, 715–718.

    Article  Google Scholar 

  7. Higgins, M. J.; Polcik, M.; Fukuma, T.; Sader, J. E.; Nakayama, Y.; Jarvis, S. P. Structured water layers adjacent to biological membranes. Biophys. J. 2006, 91, 2532–2542.

    Article  Google Scholar 

  8. Muller, D. J.; Sapra, K. T.; Scheuring, S.; Kedrov, A.; Frederix, P. L.; Fotiadis, D.; Engel, A. Single-molecule studies of membrane proteins. Curr. Opin. Struc. Biol. 2006, 16, 489–495.

    Article  Google Scholar 

  9. Picas, L.; Rico, F.; Scheuring, S. Direct measurement of the mechanical properties of lipid phases in supported bilayers. Biophys. J. 2012, 102, L1–L3.

    Google Scholar 

  10. Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J. M.; Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 1997, 276, 1109–1112.

    Article  Google Scholar 

  11. Scheuring, S.; Rigaud, J. L.; Sturgis, J. N. Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum. Embo J. 2004, 23, 4127–4133.

    Article  Google Scholar 

  12. Scheuring, S.; Seguin, J.; Marco, S.; Levy, D.; Robert, B.; Rigaud, J. L. Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM. P. Natl. Acad. Sci. USA 2003, 100, 1690–1693.

    Article  Google Scholar 

  13. Yokokawa, M.; Wada, C.; Ando, T.; Sakai, N.; Yagi, A.; Yoshimura, S. H.; Takeyasu, K. Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL. Embo J. 2006, 25, 4567–4576.

    Article  Google Scholar 

  14. Dong, M.; Sahin, O. A nanomechanical interface to rapid single-molecule interactions. Nat. Commun. 2011, 2, 247.

    Article  Google Scholar 

  15. Ido, S.; Kimiya, H.; Kobayashi, K.; Kominami, H.; Matsushige, K.; Yamada, H. Immunoactive two-dimensional self-assembly of monoclonal antibodies in aqueous solution revealed by atomic force microscopy. Nat. Mater. 2014, 13, 264–270.

    Article  Google Scholar 

  16. Ebeling, D.; Solares, S. D. Amplitude modulation dynamic force microscopy imaging in liquids with atomic resolution: Comparison of phase contrasts in single and dual mode operation. Nanotechnology 2013, 24, 135702.

    Article  Google Scholar 

  17. Melcher, J.; Carrasco, C.; Xu, X.; Carrascosa, J. L.; Gomez-Herrero, J.; Jose de Pablo, P.; Raman, A. Origins of phase contrast in the atomic force microscope in liquids. P. Natl. Acad. Sci. USA 2009, 106, 13655–13660.

    Article  Google Scholar 

  18. Fukuma, T.; Ueda, Y.; Yoshioka, S.; Asakawa, H. Atomicscale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys. Rev. Lett. 2010, 104, 016101.

    Article  Google Scholar 

  19. Dufrene, Y. F.; Martinez-Martin, D.; Medalsy, I.; Alsteens, D.; Mueller, D. J. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat. Methods 2013, 10, 847–854.

    Article  Google Scholar 

  20. Pittenger, B.; Erina, N.; Chanmin, S. Quantitative mechanical mapping at nanoscale with peak force QNM. In Bruker Application Note #128, 2009.

    Google Scholar 

  21. Feinstein, A.; Richardson, N.; Taussig, M. I. Immunoglobulin flexibility in complement activation. Immunol. Today 1986, 7, 169–174.

    Article  Google Scholar 

  22. Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Mol. Biol. Cell; Garland Science: New York, 2007.

    Google Scholar 

  23. Perkins, S. J.; Nealis, A. S.; Sutton, B. J.; Feinstein, A. Solution structure of human and mouse immunoglobulin M by synchrotron X-ray scattering and molecular graphics modelling: A possible mechanism for complement activation. J. Mol. Biol. 1991, 221, 1345–1366.

    Article  Google Scholar 

  24. Cattaneo, A.; Neuberger, M. S. Polymeric immunoglobulin M is secreted by transfectants of non-lymphoid cells in the absence of immunoglobulin J chain. Embo J. 1987, 6, 2753–2758.

    Google Scholar 

  25. Niles, M. J.; Matsuuchi, L.; Koshland, M. E. Polymer IgM assembly and secretion in lymphoid and nonlymphoid cell lines: Evidence that J chain is required for pentamer IgM synthesis. Proc. Natl. Acad. Sci. 1995, 92, 2884–2888.

    Article  Google Scholar 

  26. Randall, T. D.; Brewer, J. W.; Corley, R. B. Direct evidence that J chain regulates the polymeric structure of IgM in antibody-secreting B cells. J. Biol. Chem. 1992, 267, 18002–18007.

    Google Scholar 

  27. Wiersma, E. J.; Collins, C.; Fazel, S.; Shulman, M. J. Structural and functional analysis of J chain-deficient IgM. J. Immunol. 1998, 160, 5979–5989.

    Google Scholar 

  28. Hendrickson, B. A.; Conner, D. A.; Ladd, D. J.; Kendall, D.; Casanova, J. E.; Corthesy, B.; Max, E. E.; Neutra, M. R.; Seidman, C. E.; Seidman, J. G. Altered hepatic transport of immunoglobulin A in mice lacking the J chain. J. Exp. Med. 1995, 182, 1905–1911.

    Article  Google Scholar 

  29. Sandin, S.; Ofverstedt, L. G.; Wikstrom, A. C.; Wrange, O.; Skoglund, U. Structure and flexibility of individual immunoglobulin G molecules in solution. Structure 2004, 12, 409–415.

    Article  Google Scholar 

  30. Pumphrey, R. Computer-models of the human-immunoglobulins-shape and segmental flexibility. Immunol. Today 1986, 7, 174–178.

    Article  Google Scholar 

  31. Czajkowsky, D. M.; Shao, Z. The human IgM pentamer is a mushroom-shaped molecule with a flexural bias. P. Natl. Acad. Sci. USA 2009, 106, 14960–14965.

    Article  Google Scholar 

  32. Hafner, J. H.; Cheung, C. L.; Lieber, C. M. Growth of nanotubes for probe microscopy tips. Nature 1999, 398, 761–762.

    Article  Google Scholar 

  33. Hinterdorfer, P.; Dufrene, Y. F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 2006, 3, 347–355.

    Article  Google Scholar 

  34. Makky, A.; Berthelot, T.; Feraudet-Tarisse, C.; Volland, H.; Viel, P.; Polesel-Maris, J. Substructures high resolution imaging of individual IgG and IgM antibodies with piezoelectric tuning fork atomic force microscopy. Sens. Act. B 2012, 162, 269–277.

    Article  Google Scholar 

  35. Martinez, N. F.; Lozano, J. R.; Herruzo, E. T.; Garcia, F.; Richter, C.; Sulzbach, T.; Garcia, R. Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids. Nanotechnology 2008, 19, 384011.

    Article  Google Scholar 

  36. Martinez-Martin, D.; Herruzo, E. T.; Dietz, C.; Gomez-Herrero, J.; Garcia, R. Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy. Phys. Rev. Lett. 2011, 106, 198101.

    Article  Google Scholar 

  37. Patil, S.; Martinez, N. F.; Lozano, J. R.; Garcia, R. Force microscopy imaging of individual protein molecules with sub-pico Newton force sensitivity. J. Mol. Recognit. 2007, 20, 516–523.

    Article  Google Scholar 

  38. Roberts, C. J.; Davies, M. C.; Tendler, S. J. B.; Williams, P. M.; Davies, J.; Dawkes, A. C.; Yearwood, G. D. L.; Edwards, J. C. The discrimination of IgM and IgG type antibodies and Fab’ and F(ab)(2) antibody fragments on an industrial substrate using scanning force microscopy. Ultramicroscopy 1996, 62, 149–155.

    Article  Google Scholar 

  39. San Paulo, A.; García, R. High-resolution imaging of antibodies by tapping-mode atomic force microscopy: Attractive and repulsive tip-sample interaction regimes. Biophys. J. 2000, 78, 1599–1605.

    Article  Google Scholar 

  40. Thomson, N. H. The substructure of immunoglobulin G resolved to 25 Da using amplitude modulation AFM in air. Ultramicroscopy 2005, 105, 103–110.

    Article  Google Scholar 

  41. Zhang, Y.; Sheng, S.; Shao, Z. Imaging biological structures with the cryo atomic force microscope. Biophys. J. 1996, 71, 2168–2176.

    Article  Google Scholar 

  42. Kienberger, F.; Mueller, H.; Pastushenko, V.; Hinterdorfer, P. Following single antibody binding to purple membranes in real time. Embo Rep. 2004, 5, 579–583.

    Article  Google Scholar 

  43. Szenczi, Á.; Kardos, J.; Medgyesi, G. A.; Závodszky, P. The effect of solvent environment on the conformation and stability of human polyclonal IgG in solution. Biologicals 2006, 34, 5–14.

    Article  Google Scholar 

  44. RosaZeiser, A.; Weilandt, E.; Hild, S.; Marti, O. The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: Pulsed-force mode operation. Meas. Sci. Technol. 1997, 8, 1333–1338.

    Article  Google Scholar 

  45. Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P. Effect of contact deformations on the adhesion of particles. J. Colloid. Interf. Sci. 1975, 53, 314–326.

    Article  Google Scholar 

  46. Voss, A.; Stark, R. W.; Dietz, C. Surface versus volume properties on the nanoscale: Elastomeric polypropylene. Macromolecules 2014, 47, 5236–5245.

    Article  Google Scholar 

  47. Butt, H. J.; Jaschke, M. Calculation of thermal noise in atomic force microscopy. Nanotechnology 1995, 6, 1–7.

    Article  Google Scholar 

  48. NanoScope Software User Guide.

  49. Chiodi, F.; Sidén, Å.; Ösby, E. Isoelectric focusing of monoclonal immunoglobulin G, A and M followed by detection with the avidin-biotin system. Electrophoresis 1985, 6, 124–128.

    Article  Google Scholar 

  50. Hansma, H. G.; Laney, D. E. DNA binding to mica correlates with cationic radius: Assay by atomic force microscopy. Biophys. J. 1996, 70, 1933–1939.

    Article  Google Scholar 

  51. Pastre, D.; Pietrement, O.; Fusil, P.; Landousy, F.; Jeusset, J.; David, M. O.; Hamon, C.; Le Cam, E.; Zozime, A. Adsorption of DNA to mica mediated by divalent counterions: A theoretical and experimental study. Biophys. J. 2003, 85, 2507–2518.

    Article  Google Scholar 

  52. Munn, E. A.; Bachmann, L.; Feinstein, A. Structure of hydrated immunoglobulins and antigen-antibody complexes-electronmicroscopy of spray-freeze-etched specimens. Biochim. Biophys. Acta 1980, 625, 1–9.

    Article  Google Scholar 

  53. Knoll, A.; Magerle, R.; Krausch, G. Tapping mode atomic force microscopy on polymers: Where is the true sample surface? Macromolecules 2001, 34, 4159–4165.

    Article  Google Scholar 

  54. Villarrubia, J. S. Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J. Res. Natl. Inst. Stan. 1997, 102, 425–454.

    Article  Google Scholar 

  55. Dimitriadis, E. K.; Horkay, F.; Maresca, J.; Kachar, B.; Chadwick, R. S. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 2002, 82, 2798–2810.

    Article  Google Scholar 

  56. Domke, J.; Radmacher, M. Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 1998, 14, 3320–3325.

    Article  Google Scholar 

  57. Volpatti, L. R.; Knowles, T. P. J. Polymer physics inspired approaches for the study of the mechanical properties of amyloid fibrils. J. Polymer Sci. B 2014, 52, 281–292.

    Article  Google Scholar 

  58. Christenson, H. K. Adhesion and surface-energy of mica in air and water. J. Phys. Chem 1993, 97, 12034–12041.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Dietz or Robert W. Stark.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voss, A., Dietz, C., Stocker, A. et al. Quantitative measurement of the mechanical properties of human antibodies with sub-10-nm resolution in a liquid environment. Nano Res. 8, 1987–1996 (2015). https://doi.org/10.1007/s12274-015-0710-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0710-5

Keywords

Navigation