Skip to main content
Log in

Ultrafast shape change and joining of small-volume materials using nanoscale electrical discharge

Nano Research Aims and scope Submit manuscript

Abstract

Using nanoscale electrical-discharge-induced rapid Joule heating, we developed a method for ultrafast shape change and joining of small-volume materials. Shape change is dominated by surface-tension-driven convection in the transient liquid melt, giving an extremely high strain rate of ~106 s–1. In addition, the heat can be dissipated in small volumes within a few microseconds through thermal conduction, quenching the melt back to the solid state with cooling rates up to 108 K·s-1. We demonstrate that this approach can be utilized for the ultrafast welding of small-volume crystalline Mo (a refractory metal) and amorphous Cu49Zr51 without introducing obvious microstructural changes, distinguishing the process from bulk welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Uchic, M. D.; Dimiduk, D. M.; Florando, J. N.; Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 2004, 305, 986–989.

    Article  Google Scholar 

  2. Shan, Z. W.; Mishra, R. K.; Asif, S. A. S.; Warren, O. L.; Minor, A. M. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 2008, 7, 115–119.

    Article  Google Scholar 

  3. Yu, Q.; Shan, Z. W.; Li, J.; Huang, X.; Xiao, L.; Sun, J.; Ma, E. Strong crystal size effect on deformation twinning. Nature 2010, 463, 335–338.

    Article  Google Scholar 

  4. Wang, C. C.; Mao, Y. W.; Shan, Z. W.; Dao, M.; Li, J.; Sun, J.; Ma, E.; Suresh, S. Real-time, high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass. Proc. Nat. Acad. Sci. U.S.A. 2013, 110, 19725–19730.

    Article  Google Scholar 

  5. Tian, L.; Cheng, Y. Q.; Shan, Z. W.; Li, J.; Wang, C. C.; Han, X. D.; Sun, J.; Ma, E. Approaching the ideal elastic limit of metallic glasses. Nat. Comm. 2012, 3, 609.

    Article  Google Scholar 

  6. Wang, C. C.; Ding, J.; Cheng, Y. Q.; Wan, J. C.; Tian, L.; Sun, J.; Shan, Z. W.; Li, J.; Ma, E. Sample size matters for al88fe7gd5 metallic glass: Smaller is stronger. Acta Mater. 2012, 60, 5370–5379.

    Article  Google Scholar 

  7. Guo, H.; Yan, P. F.; Wang, Y. B.; Tan, J.; Zhang, Z. F.; Sui, M. L.; Ma, E. Tensile ductility and necking of metallic glass. Nat. Mater. 2007, 6, 735–739.

    Article  Google Scholar 

  8. Jang, D. C.; Greer, J. R. Transition from a strong yet brittle to a stronger and ductile state by size reduction of metallic glasses. Nat. Mater. 2010, 9, 215–219.

    Google Scholar 

  9. Jiang, Q. K.; Liu, P.; Cao, Q. P.; Wang, C.; Li, X. L.; Gao, X. Y.; Wang, X. D.; Zhang, D. X.; Han, X. D.; Zhang, Z.; Jiang, J. Z. The effect of size on the elastic strain limit in Ni60Nb40 glassy films. Acta Mater. 2013, 61, 4689–4695.

    Article  Google Scholar 

  10. Deng, Q. S.; Cheng, Y. Q.; Yue, Y. H.; Zhang, L.; Zhang, Z.; Han, X. D.; Ma, E. Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding. Acta Mater. 2011, 59, 6511–6518.

    Article  Google Scholar 

  11. Kumar, G.; Tang, H. X.; Schroers, J. Nanomoulding with amorphous metals. Nature 2009, 457, 868–128.

    Article  Google Scholar 

  12. Schroers, J. Processing of bulk metallic glass. Adv. Mater. 2010, 22, 1566–1597.

    Article  Google Scholar 

  13. Johnson, W. L.; Kaltenboeck, G.; Demetriou, M. D.; Schramm, J. P.; Liu, X.; Samwer, K.; Kim, C. P.; Hofmann, D. C. Beating crystallization in glass-forming metals by millisecond heating and processing. Science 2011, 332, 828–833.

    Article  Google Scholar 

  14. Swiston, A. J.; Hufnagel, T. C.; Weihs, T. P. Joining bulk metallic glass using reactive multilayer foils. Scr. Mater. 2003, 48, 1575–1580.

    Article  Google Scholar 

  15. Kawamura, Y.; Ohno, Y. Spark welding of Zr55Al10Ni5Cu30 bulk metallic glasses. Scr. Mater. 2001, 45, 127–132.

    Article  Google Scholar 

  16. De Heer, W. A.; Chatelain, A.; Ugarte, D. A carbon nanotube field-emission electron source. Science 1995, 270, 1179–1180.

    Article  Google Scholar 

  17. Wang, Q. H.; Corrigan, T. D.; Dai, J. Y.; Chang, R. P. H.; Krauss, A. R. Field emission from nanotube bundle emitters at low fields. Appl. Phys. Lett. 1997, 70, 3308–3310.

    Article  Google Scholar 

  18. Chatterton, P. A. A theoretical study of field emission initiated vacuum breakdown. Proc. Phys. Soc. London 1966, 88, 231–245.

    Article  Google Scholar 

  19. Charbonnier, F. M.; Bennette, C. J.; Swanson, L. W. Electrical breakdown between metal electrodes in high vacuum. I. Theory. J. Appl. Phys. 1967, 38, 627–640.

    Article  Google Scholar 

  20. Utsumi, T. Cathode-and anode-induced electrical breakdown in vacuum. J. Appl. Phys. 1967, 38, 2989.

    Article  Google Scholar 

  21. Smith, W. A.; Elliot, C. T.; Pulfrey, D. L. A photographic study of electrical breakdown at small gaps in vacuum. J. Phys. D-Appl. Phys. 1969, 2, 1005.

    Article  Google Scholar 

  22. Davies, D. K.; Biondi, M. A. Detection of electrode vapor between plane parallel copper electrodes prior to current amplification and breakdown in vacuum. J. Appl. Phys. 1970, 41, 88.

    Article  Google Scholar 

  23. Iida, T.; Guthrie, R. Predictions for the sound velocity in various liquid metals at their melting point temperatures. Metal. and Materi. Trans. B 2009, 40, 959–966.

    Article  Google Scholar 

  24. Zhong, L.; Wang, J.; Sheng, H.; Zhang, Z.; Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 2014, 512, 177–180.

    Article  Google Scholar 

  25. Jiang, Q. K.; Wang, X. D.; Nie, X. P.; Zhang, G. Q.; Ma, H.; Fecht, H. J.; Bednarcik, J.; Franz, H.; Liu, Y. G.; Cao, Q. P.; Jiang, J. Z. Zr-(Cu,Ag)-Al bulk metallic glasses. Acta Mater. 2008, 56, 1785–1796.

    Article  Google Scholar 

  26. de Heer, W. A.; Poncharal, P.; Berger, C.; Gezo, J.; Song, Z. M.; Bettini, J.; Ugarte, D. Liquid carbon, carbon-glass beads, and the crystallization of carbon nanotubes. Science 2005, 307, 907–910.

    Article  Google Scholar 

  27. Choy, C. L.; Tong, K. W.; Wong, H. K.; Leung, W. P. Thermal conductivity of amorphous alloys above room temperature J. Appl. Phys. 1991, 70, 4919–4925.

    Article  Google Scholar 

  28. Lide, D. R. CRC handbook of chemistry and physics; CRC Press, 2009.

    Google Scholar 

  29. Mishin, Y.; Asta, M.; Li, J. Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Mater. 2010, 58, 1117–1151.

    Article  Google Scholar 

  30. Tian, L.; Li, J.; Sun, J.; Ma, E.; Shan, Z.-W. Visualizing sizedependent deformation mechanism transition in Sn. Scientific Reports 2013, 3, 2113.

    Google Scholar 

  31. Jin, C. H.; Suenaga, K.; Iijima, S. Plumbing carbon nanotubes. Nat. Nanotechnol. 2008, 3, 17–21.

    Article  Google Scholar 

  32. Lu, Y.; Huang, J. Y.; Wang, C.; Sun, S. H.; Lou, J. Cold welding of ultrathin gold nanowires. Nat. Nanotechnol. 2010, 5, 218–224.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Wei Shan, Ju Li or Evan Ma.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CC., Li, QJ., Chen, L. et al. Ultrafast shape change and joining of small-volume materials using nanoscale electrical discharge. Nano Res. 8, 2143–2151 (2015). https://doi.org/10.1007/s12274-014-0685-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0685-7

Keywords

Navigation