Skip to main content
Log in

Direct fabrication of carbon nanotube-graphene hybrid films by a blown bubble method

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hybridization of carbon nanotubes (CNT) with graphene provides a promising means of integrating the attributes of both materials, thereby enabling widespread application. Here, we present a method to directly assemble hybrid CNT-graphene films by a blown bubble method combined with selective substrate annealing. We use polymethylmethacrylate (PMMA) as the polymeric matrix to blow bubbles containing self-assembled multi-walled CNT arrays, and then transform the bubble film into a CNT-graphene hybrid film by thermal annealing on a Cu substrate; PMMA serves as the carbon source for growing single to few-layer graphene among the CNT network until a continuously hybridized structure is formed. Compared to the bare (non-hybridized) CNT networks, the hybrid films exhibit improved electrical conductivity and structural integrity. Our method also enables the fabrication of a multi-walled CNT-Si solar cell, which has high power conversion efficiency, through the assembly of hybrid CNT-graphene structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

    Article  Google Scholar 

  2. Zhang, Q.; Wan, X. J.; Xing, F.; Huang, L.; Long, G. K.; Yi, N. B.; Ni, W.; Liu, Z. B.; Yian, J. G.; Chen, Y. S. Solutionprocessable graphene mesh transparent electrodes for organic solar cells. Nano Res. 2013, 6, 478–484.

    Article  Google Scholar 

  3. Yoo, D.; Kim, J.; Kim, J. H. Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly (4-styrenesulfonate)(PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. 2014, 7, 717–730.

    Article  Google Scholar 

  4. Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

    Article  Google Scholar 

  5. Feng, C.; Liu, K.; Wu, J.-S.; Liu, L.; Cheng, J.-S.; Zhang, Y. Y.; Sun, Y. H.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20, 885–891.

    Article  Google Scholar 

  6. Long, D. P.; Lazorcik, J. L.; Shashidhar, R. Magnetically directed self-assembly of carbon nanotube devices. Adv. Mater. 2004, 16, 814–819.

    Article  Google Scholar 

  7. Shekhar, S.; Stokes, P.; Khondaker, S. I. Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis. ACS Nano 2011, 5, 1739–1746.

    Article  Google Scholar 

  8. Shaver, J.; Parra-Vasquez, A. N. G.; Hansel, S.; Portugall, O.; Mielke, C. H.; von Ortenberg, M.; Hauge, R. H.; Pasquali, M.; Kono, J. Alignment dynamics of single-walled carbon nanotubes in pulsed ultrahigh magnetic fields. ACS Nano 2009, 3, 131–138.

    Article  Google Scholar 

  9. Li, X. L.; Zhang, L.; Wang, X. R.; Shimoyama, I.; Sun, X. M.; Seo, W.-S.; Dai, H. J. Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc. 2007, 129, 4890–4891.

    Article  Google Scholar 

  10. Giancane, G.; Ruland, A.; Sgobba, V.; Manno, D.; Serra, A.; Farinola, G. M.; Omar, O. H.; Guldi, D. M.; Valli, L. Aligning single-walled carbon nanotubes by means of Langmuir-Blodgett film deposition: Optical, morphological, and photo-electrochemical studies. Adv. Funct. Mater. 2010, 20, 2481–2488.

    Article  Google Scholar 

  11. Choi, S.-W.; Kang, W.-S.; Lee, J.-H.; Najeeb, C. K.; Chun, H.-S.; Kim, J.-H. Patterning of hierarchically aligned single-walled carbon nanotube Langmuir-Blodgett films by microcontact printing. Langmuir 2010, 26, 15680–15685.

    Article  Google Scholar 

  12. Shim, B. S.; Kotov, N. A. Single-walled carbon nanotube combing during layer-by-layer assembly: From random adsorption to aligned composites. Langmuir 2005, 21, 9381–9385.

    Article  Google Scholar 

  13. Liu, H. P.; Takagi, D.; Chiashi, S.; Homma, Y. Transfer and alignment of random single-walled carbon nanotube films by contact printing. ACS Nano 2010, 4, 933–938.

    Article  Google Scholar 

  14. Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman. R. H. Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309, 1215–1219.

    Article  Google Scholar 

  15. Aliev, A. E.; Oh, J.; Kozlov, M. E.; Kuznetsov, A. A.; Fang, S. L.; Fonseca, A. F.; Ovalle, R.; Lima, M. D.; Haque, M. H.; Gartstein, Y. N.; Zhang, M. et al. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 2009, 323, 1575–1578.

    Article  Google Scholar 

  16. Feng, C.; Liu, K.; Wu, J.-S.; Liu, L.; Cheng, J.-S.; Zhang, Y. Y.; Sun, Y. H.; Li, Q. Q.; Fan, S. S.; Jiang. K. L. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20, 885–891.

    Article  Google Scholar 

  17. Xiao, L.; Chen, Z.; Feng, C.; Liu, L.; Bai, Z.-Q.; Wang, Y.; Qian, L.; Zhang, Y. Y.; Li, Q. Q.; Jiang, K. L. et al. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 2008, 8, 4539–4545.

    Article  Google Scholar 

  18. Wei, Y.; Liu, L.; Liu, P.; Xiao, L.; Jiang, K. L.; Fan. S. S. Scaled fabrication of single-nanotube-tipped ends from carbon nanotube micro-yarns and their field emission applications. Nanotechnology 2008, 19, 475707.

    Article  Google Scholar 

  19. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov. A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  20. Kim, S. H.; Song, W.; Jung, M. W.; Kang, M.-A.; Kim, K.; Chang, S.-J.; Lee, S. S.; Lim, J. J.; Hwang, J. H.; Myung, S. et al. Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors. Adv. Mater. 2014, 26, 4247–4252.

    Article  Google Scholar 

  21. Yan, Z.; Peng, Z. W.; Casillas, G.; Lin, J.; Xiang, C. S.; Zhou, H. Q.; Yang, Y.; Ruan, G. D.; Raji, A.-R. O.; Samuel, E. L. G. et al. Rebar graphene. ACS Nano 2014, 8, 5061–5068.

    Article  Google Scholar 

  22. Lin, X. Y.; Liu, P.; Wei, Y.; Li, Q. Q.; Wang, J. P.; Wu, Y.; Feng, C.; Zhang, L. N.; Fan, S. S.; Jiang. K. L. Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support. Nat. Commun. 2013, 4, 2920.

    Google Scholar 

  23. Yu, G. H.; Cao, A. Y.; Lieber. C. M. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2008, 2, 372–377.

    Article  Google Scholar 

  24. Yu, G. H.; Li, X. L.; Lieber, C. M.; Cao. A. Y. Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures. J. Mater. Chem. 2008, 18, 728–734.

    Article  Google Scholar 

  25. Wu, S. T.; Huang, K.; Shi, E. Z.; Xu, W. J.; Fang, Y.; Yang, Y. B.; Cao. A. Y. Soluble polymer-based, blown bubble assembly of single- and double-layer nanowires with shape control. ACS Nano 2014, 8, 3522–3530.

    Article  Google Scholar 

  26. Chae, S. J.; Günes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H.-J.; Yoon, S.-M.; Choi, J.-Y.; Park, M. H. et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 2009, 21, 2328–2333.

    Article  Google Scholar 

  27. Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B. Y.; Borysiak, M.; Cai, W. W.; Velamakanni, A.; Zhu, Y. W. et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010, 10, 4328–4334.

    Article  Google Scholar 

  28. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  29. Sun, Z. Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour. J. M. Growth of graphene from solid carbon sources. Nature 2010, 468, 549–552.

    Article  Google Scholar 

  30. Jia, Y.; Cao, A. Y.; Bai, X.; Li, Z.; Zhang, L. H.; Guo, N.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H. et al. Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett. 2011, 11, 1901–1905.

    Article  Google Scholar 

  31. Shi, E. Z.; Li, H. B.; Yang, L.; Zhang, L. H.; Li, Z.; Li, P. X.; Shang, Y. Y.; Wu, S. T.; Li, X. M.; Wei, J. Q. et al. Colloidal antireflection coating improves graphene-silicon solar cells. Nano Lett. 2013, 13, 1776–1781.

    Google Scholar 

  32. Shi, E. Z.; Zhang, L. H.; Li, Z.; Li, P. X.; Shang, Y. Y.; Jia, Y.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H.; Zhang, S.; Cao. A. Y. TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci. Rep. 2012, 2, 884.

    Google Scholar 

  33. Du, A. J.; Ng, Y. H.; Bell, N. J.; Zhu, Z. H.; Amal, R.; Smith, S. C. Hybrid graphene/titania nanocomposite: Interface charge transfer, hole doping, and sensitization for visible light response. J. Phys. Chem. Lett. 2011, 2, 894–899.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anyuan Cao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Shi, E., Yang, Y. et al. Direct fabrication of carbon nanotube-graphene hybrid films by a blown bubble method. Nano Res. 8, 1746–1754 (2015). https://doi.org/10.1007/s12274-014-0679-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0679-5

Keywords

Navigation