Nano Research

, Volume 8, Issue 5, pp 1729–1745

Biotinylated polyurethane-urea nanoparticles for targeted theranostics in human hepatocellular carcinoma

  • Genoveva Morral-Ruíz
  • Pedro Melgar-Lesmes
  • Andrea López-Vicente
  • Conxita Solans
  • María José García-Celma
Research Article

DOI: 10.1007/s12274-014-0678-6

Cite this article as:
Morral-Ruíz, G., Melgar-Lesmes, P., López-Vicente, A. et al. Nano Res. (2015) 8: 1729. doi:10.1007/s12274-014-0678-6

Abstract

Over the past years, significant efforts have been devoted to explore novel drug delivery and detection strategies for simultaneous therapy and diagnostics. The development of biotinylated polyurethane-urea nanoparticles as theranostic nanocarriers for targeted drug and plasmid delivery, for fluorescence detection of human hepatocellular carcinoma cells, is described herein. These targeted nanoparticles are specifically designed to incorporate biotin into the polymeric matrix, since many tumor types overexpress receptors for biotin as a mechanism to boost uncontrolled cell growth. The obtained nanoparticles were spherical, exhibited an average diameter ranging 110–145 nm, and showed no cytotoxicity in healthy endothelial cells. Biotinylated nanoparticles are selectively incorporated into the perinuclear and nuclear area of the human hepatocellular carcinoma cell line, HepG2, in division, but not into growing, healthy, human endothelial cells. Indeed, the simultaneous incorporation of the anticancer drugs, phenoxodiol or sunitinib, together with plasmid DNA encoding green fluorescent protein, into these nanoparticles allows a targeted pharmacological antitumor effect and furthermore, selective transfection of a reporter gene, to detect these cancer cells. The combined targeted therapy and detection strategy described here could be exploited for liver cancer therapy and diagnostics, with a moderate safety profile, and may also be a potential tool for other types of cancer.

Keywords

cancer therapy DNA nanoparticles polyurethane theranostics 

Supplementary material

12274_2014_678_MOESM1_ESM.pdf (751 kb)
Supplementary material, approximately 763 KB.

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Genoveva Morral-Ruíz
    • 1
  • Pedro Melgar-Lesmes
    • 1
  • Andrea López-Vicente
    • 1
  • Conxita Solans
    • 2
    • 3
  • María José García-Celma
    • 1
    • 3
  1. 1.Department of Pharmacy and Pharmaceutical Technology, Faculty of PharmacyUniversity of BarcelonaBarcelonaSpain
  2. 2.Institute of Advanced Chemistry of Catalonia (IQAC)CSICBarcelonaSpain
  3. 3.Networking Research Center on Bioengineering, Biomaterials and NanomedicineCIBER-BBNMadridSpain
  4. 4.Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeUSA