Skip to main content
Log in

Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

This review outlines the developments and recent progress in metal-assisted chemical etching of silicon, summarizing a variety of fundamental and innovative processes and etching methods that form a wide range of nanoscale silicon structures. The use of silicon as an anode for Li-ion batteries is also reviewed, where factors such as film thickness, doping, alloying, and their response to reversible lithiation processes are summarized and discussed with respect to battery cell performance. Recent advances in improving the performance of silicon-based anodes in Li-ion batteries are also discussed. The use of a variety of nanostructured silicon structures formed by many different methods as Li-ion battery anodes is outlined, focusing in particular on the influence of mass loading, core-shell structure, conductive additives, and other parameters. The influence of porosity, dopant type, and doping level on the electrochemical response and cell performance of the silicon anodes are detailed based on recent findings. Perspectives on the future of silicon and related materials, and their compositional and structural modifications for energy storage via several electrochemical mechanisms, are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430.

    Google Scholar 

  2. Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

    Google Scholar 

  3. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Google Scholar 

  4. McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 2013, 25, 4966–4985.

    Google Scholar 

  5. Lee, C. L.; Tsujino, K.; Kanda, Y.; Ikeda, S.; Matsumura, M. Pore formation in silicon by wet etching using micrometresized metal particles as catalysts. J. Mater. Chem. 2008, 18, 1015–1020.

    Google Scholar 

  6. Wei, J.; Buriak, J. M.; Siuzdak, G. Desorption/ionization mass spectrometry on porous silicon. Nature 1999, 399, 243–246.

    Google Scholar 

  7. Lehmann, V.; Foll, H. Formation mechanism and properties of electrochemically etched trenches in n-type silicon. J. Electrochem. Soc. 1990, 137, 653–659.

    Google Scholar 

  8. Canham, L. T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1990, 57, 1046–1048.

    Google Scholar 

  9. Hochbaum, A. I.; Gargas, D.; Hwang, Y. J.; Yang, P. D. Single crystalline mesoporous silicon nanowires. Nano Lett. 2009, 9, 3550–3554.

    Google Scholar 

  10. Chazalviel, J. N. Porous Silicon Science and Technology; Springer: Berlin, 1995.

    Google Scholar 

  11. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Google Scholar 

  12. Tsirlina, T.; Cohen, S.; Cohen, H.; Sapir, L.; Peisach, M.; Tenne, R.; Matthaeus, A.; Tiefenbacher, S.; Jaegermann, W.; Ponomarev, E. A. et al. Growth of crystalline WSe2 and WS2 films on amorphous substrate by reactive (van der Waals) rheotaxy. Sol. Energ. Mat. Sol. C. 1996, 44, 457–470.

    Google Scholar 

  13. Stewart, M. P.; Buriak, J. M. Chemical and biological applications of porous silicon technology. Adv. Mater. 2000, 12, 859–869.

    Google Scholar 

  14. Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A. Control of thickness and orientation of solution-grown silicon nanowires. Science 2000, 287, 1471–1473.

    Google Scholar 

  15. Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853.

    Google Scholar 

  16. Smith, R. L.; Collins, S. D. Porous silicon formation mechanisms. J. Appl. Phys. 1992, 71, R1–R22.

    Google Scholar 

  17. Lehman, V. Electrochemistry of Silicon; Wiley-VCH: Weinheim, Germany, 2002.

    Google Scholar 

  18. Kolasinski, K. W. Silicon nanostructures from electroless electrochemical etching. Curr. Opin. Solid State Mater. Sci. 2005, 9, 73–83.

    Google Scholar 

  19. Beale, M. I. J.; Benjamin, J. D.; Uren, M. J.; Chew, N. G.; Cullis, A. G. An experimental and theoretical study of the formation and microstructure of porous silicon. J. Cryst. Growth 1985, 73, 622–636.

    Google Scholar 

  20. Uhlir, A. Electrolytic shaping of germanium and silicon. Bell Syst. Tech. J. 1956, 35, 333–347.

    Google Scholar 

  21. Quiroga-González, E.; Carstensen, J.; Glynn, C.; O’Dwyer, C.; Föll, H. Pore size modulation in electrochemically etched macroporous p-type silicon monitored by FFT impedance spectroscopy and Raman scattering. Phys. Chem. Chem. Phys. 2014, 16, 255–263.

    Google Scholar 

  22. Cullis, A. G.; Canham, L. T. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 1991, 353, 335–338.

    Google Scholar 

  23. Canham, L. Properties of Porous Silicon. Institution of Electrical Engineers, 1997.

    Google Scholar 

  24. O’Dwyer, C.; Buckley, D. N.; Sutton, D.; Newcomb, S. B. Anodic formation and characterization of nanoporous InP in aqueous KOH electrolytes. J. Electrochem. Soc. 2006, 153, G1039–G1046.

    Google Scholar 

  25. O’Dwyer, C.; Buckley, D. N; Sutton, D.; Serantoni, M.; Newcomb, S. B. An investigation by AFM and TEM of the mechanism of anodic formation of nanoporosity in n-InP in KOH. J. Electrochem. Soc. 2007, 154, H78–H85.

    Google Scholar 

  26. Tiginyanu, I.; Ursaki, V.; Monaico, E.; Foca, E.; Föll, H. Pore etching in III–V and II–VI semiconductor compounds in neutral electrolyte. Electrochem. Solid ST. 2007, 10, D127–D129.

    Google Scholar 

  27. O’Dwyer, C.; Buckley, D. N.; Newcomb, S. B. Simultaneous observation of current oscillations and porous film growth during anodization of InP. Langmuir 2005, 21, 8090–8095.

    Google Scholar 

  28. Lynch, R.; O’Dwyer, C.; Sutton, D.; Newcomb, S. B.; Buckley, D. N. Nanoporous domains in n-InP anodized in KOH. ECS Trans. 2007, 6, 355–366.

    Google Scholar 

  29. Lynch, R.; O’Dwyer, C.; Quill, N.; Nakahara, S.; Newcomb, S. B.; Buckley, D. N. Pore propagation directions and nanoporous domain shape in n-InP anodized in KOH. J. Electrochem. Soc. 2013, 160, D260–D270.

    Google Scholar 

  30. Lynch, R. P.; Quill, N.; O’Dwyer, C.; Nakahara, S.; Buckley, D. N. Propagation of nanopores during anodic etching of n-InP in KOH. Phys. Chem. Chem. Phys. 2013, 15, 15135–15145.

    Google Scholar 

  31. Sun, D.; Riley, A. E.; Cadby, A. J.; Richman, E. K.; Korlann, S. D.; Tolbert, S. H. Hexagonal nanoporous germanium through surfactantdriven self-assembly of Zintl clusters. Nature 2006, 441, 1126–1130.

    Google Scholar 

  32. Armatas, G. S.; Kanatzidis, M. G. Hexagonal mesoporous germanium. Science 2006, 313, 817–820.

    Google Scholar 

  33. Mohanan, J. L.; Arachchige, I. U.; Brock, S. L. Porous semiconductor chalcogenide aerogels. Science 2005, 307, 397–400.

    Google Scholar 

  34. Bag, S.; Trikalitis, P. N.; Chupas, P. J.; Armatas, G. S.; Kanatzidis, M. G. Porous semiconducting gels and aerogels from chalcogenide clusters. Science 2007, 317, 490–493.

    Google Scholar 

  35. Kato, S.; Kurokawa, Y.; Watanabe, Y.; Yamada, Y.; Yamada, A.; Ohta, Y.; Niwa, Y.; Hirota, M. Optical assessment of silicon nanowire arrays fabricated by metal-assisted chemical etching. Nanoscale Res. Lett. 2013, 8, 1–6.

    Google Scholar 

  36. Wen, X. M.; Van Dao, L.; Hannaford, P. Temperature dependence of photoluminescence in silicon quantum dots. J. Phys. D: Appl. Phys. 2007, 40, 3573–3578.

    Google Scholar 

  37. Li, X. Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics. Curr. Opin. Solid ST. M. 2012, 16, 71–81.

    Google Scholar 

  38. Li, X. P.; Xiao, Y. J.; Bang, J. H.; Lausch, D.; Meyer, S.; Miclea, P. T.; Jung, J. Y.; Schweizer, S. L.; Lee, J. H.; Wehrspohn, R. B. Upgraded silicon nanowires by metal-assisted etching of metallurgical silicon: A new route to nanostructured solar-grade silicon. Adv. Mater. 2013, 25, 3187–3191.

    Google Scholar 

  39. Lin, V. S. Y.; Motesharei, K.; Dancil, K. P. S.; Sailor, M. J.; Ghadiri, M. R. A porous silicon-based optical interferometric biosensor. Science 1997, 278, 840–843.

    Google Scholar 

  40. Hochbaum, A. I.; Fan, R.; He, R. R.; Yang, P. D. Controlled growth of Si nanowire arrays for device integration. Nano Lett. 2005, 5, 457–460.

    Google Scholar 

  41. Li, Y. Y.; Cunin, F.; Link, J. R.; Gao, T.; Betts, R. E.; Reiver, S. H.; Chin, V.; Bhatia, S. N.; Sailor, M. J. Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 2003, 299, 2045–2047.

    Google Scholar 

  42. Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163.

    Google Scholar 

  43. Ghossoub, M.; Valavala, K.; Seong, M.; Azeredo, B.; Hsu, K.; Sadhu, J.; Singh, P.; Sinha, S. Spectral phonon scattering from sub-10 nm surface roughness wavelengths in metal-assisted chemically etched Si nanowires. Nano Lett. 2013, 13, 1564–1571.

    Google Scholar 

  44. Feser, J. P.; Sadhu, J. S.; Azeredo, B. P.; Hsu, K. H.; Ma, J.; Kim, J.; Seong, M.; Fang, N. X.; Li, X. L.; Ferreira, P. M. Thermal conductivity of silicon nanowire arrays with controlled roughness. J. Appl. Phys. 2012, 112, 114306.

    Google Scholar 

  45. Lim, J. W.; Hippalgaonkar, K.; Andrews, S. C.; Majumdar, A.; Yang, P. D. Quantifying surface roughness effects on phonon transport in silicon nanowires. Nano Lett. 2012, 12, 2475–2482.

    Google Scholar 

  46. Oskam, G.; Long, J. G.; Natarajan, A.; Searson, P. C. Electrochemical deposition of metals onto silicon. J. Phys. D: Appl. Phys. 1998, 31, 1927–1949.

    Google Scholar 

  47. Dawood, M. K.; Tripathy, S.; Dolmanan, S. B.; Ng, T. H.; Tan, H.; Lam, J. Influence of catalytic gold and silver metal nanoparticles on structural, optical, and vibrational properties of silicon nanowires synthesized by metal-assisted chemical etching. J. Appl. Phys. 2012, 112, 073509.

    Google Scholar 

  48. Chattopadhyay, S.; Li, X. L.; Bohn, P. W. In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching. J. Appl. Phys. 2002, 91, 6134–6140.

    Google Scholar 

  49. Kato, Y.; Adachi, S. Synthesis of Si nanowire arrays in AgO/HF solution and their optical and wettability properties. J. Electrochem. Soc. 2011, 158, K157–K163.

    Google Scholar 

  50. Hochbaum, A. I.; Yang, P. D. Semiconductor nanowires for energy conversion. Chem. Rev. 2009, 110, 527–546.

    Google Scholar 

  51. Peng, K. Q.; Yan, Y. J.; Gao, S. P.; Zhu, J. Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv. Mater. 2002, 14, 1164–1167.

    Google Scholar 

  52. Peng, K. Q.; Hu, J. J.; Yan, Y. J.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S. T.; Zhu, J. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater. 2006, 16, 387–394.

    Google Scholar 

  53. Huang, Z. P.; Geyer, N.; Werner, P.; De Boor, J.; Gösele, U. Metal-assisted chemical etching of silicon: A review. Adv. Mater. 2011, 23, 285–308.

    Google Scholar 

  54. Li, X. Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics. Curr. Opin. Solid. St. M. 2012, 16, 71–81.

    Google Scholar 

  55. Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.

    Google Scholar 

  56. Zhang, M. L.; Peng, K. Q.; Fan, X.; Jie, J. S.; Zhang, R. Q.; Lee, S. T.; Wong, N. B. Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J. Phys. Chem. C 2008, 112, 4444–4450.

    Google Scholar 

  57. Li, J.; Yue, C.; Yu, Y.; Chui, Y. S.; Yin, J.; Wu, Z.; Wang, C.; Zang, Y.; Lin, W.; Li, J. et al. Si/Ge core-shell nanoarrays as the anode material for 3D lithium ion batteries. J. Mater. Chem. A 2013, 1, 14344–14349.

    Google Scholar 

  58. Li, X.; Bohn, P. W. Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl. Phys. Lett. 2000, 77, 2572–2574.

    Google Scholar 

  59. Peng, K. Q.; Fang, H.; Hu, J. J.; Wu, Y.; Zhu, J.; Yan, Y. J.; Lee, S. Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chem. Eur. J. 2006, 12, 7942–7947.

    Google Scholar 

  60. Peng, K.; Wu, Y.; Fang, H.; Zhong, X.; Xu Y.; Zhu, J. Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew. Chem. Int. Edit. 2005, 44, 2737–2742.

    Google Scholar 

  61. Teerlinck, I.; Mertens, P. W.; Schmidt, H. F.; Meuris, M.; Heyns, M. M. Impact of the electrochemical properties of silicon wafer surfaces on copper outplating from HF solutions. J. Electrochem. Soc. 1996, 143, 3323–3327.

    Google Scholar 

  62. Gorostiza, P.; Díaz, R.; Servat, J.; Sanz, F.; Morante, J. R. Atomic force microscopy study of the silicon doping influence on the first stages of platinum electroless deposition. J. Electrochem. Soc. 1997, 144, 909–914.

    Google Scholar 

  63. Tang, H.; Tu, J.; Liu, X.; Zhang, Y.; Huang, S.; Li, W.; Wang, X.; Gu, C. Self-assembly of Si/honeycomb reduced graphene oxide composite film as a binder-free and flexible anode for Li-ion batteries. J. Mater. Chem. A 2014, 2, 5834–5840.

    Google Scholar 

  64. Li, Z. C.; Zhao, L.; Diao, H. W.; Zhou, C. L.; Li, H. L.; Wang, W. J. Macroporous silicon formation on low-resistivity p-type c-Si substrate by metal-catalyzed electrochemical etching. Int. J. Electrochem. Sci. 2013, 8, 1163–1169.

    Google Scholar 

  65. Kolasinski, K. W. Etching of silicon in fluoride solutions. Surf. Sci. 2009, 603, 1904–1911.

    Google Scholar 

  66. Peng, K. Q.; Hu, J. J.; Yan, Y. J.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S. T.; Zhu, J. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater. 2006, 16, 387–394.

    Google Scholar 

  67. Trucks, G. W.; Raghavachari, K.; Higashi, G. S.; Chabal, Y. J. Mechanism of HF etching of silicon surfaces: A theoretical understanding of hydrogen passivation. Phys. Rev. Lett. 1990, 65, 504–507.

    Google Scholar 

  68. Uhlir Jr, A. Electrolytic shaping of germanium and silicon. Bell System Tech. J. 1956, 35, 333–347.

    Google Scholar 

  69. Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89.

    Google Scholar 

  70. Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208–211.

    Google Scholar 

  71. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 2008, 3, 31–35.

    Google Scholar 

  72. Ruffo, R.; Hong, S. S.; Chan, C. K.; Huggins, R. A.; Cui, Y. Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C 2009, 113, 11390–11398.

    Google Scholar 

  73. Wang, Y.; Lew, K. K.; Ho, T. T.; Pan, L.; Novak, S. W.; Dickey, E. C.; Redwing J. M.; Mayer, T. S. Use of phosphine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires. Nano Lett. 2005, 5, 2139–2143.

    Google Scholar 

  74. Schmidt, V.; Senz, S.; Gösele, U. Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett. 2005, 5, 931–935.

    Google Scholar 

  75. Choi, W. K.; Liew, T. H.; Dawood, M. K.; Smith, H. I.; Thompson, C. V.; Hong, M. H. Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching. Nano Lett. 2008, 8, 3799–3802.

    Google Scholar 

  76. de Boor, J.; Geyer, N.; Wittemann, J. V.; Gösele, U.; Schmidt, V. Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching. Nanotechnology 2010, 21, 095302.

    Google Scholar 

  77. Wang, N.; Tang, Y. H.; Zhang, Y. F.; Lee, C. S.; Lee, S. T. Nucleation and growth of Si nanowires from silicon oxide. Phys. Rev. B 1998, 58, R16024–R16026.

    Google Scholar 

  78. Peng, K. Q.; Jie, J. S.; Zhang, W. J.; Lee, S. T. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 2008, 93, 033105.

    Google Scholar 

  79. Azeredo, B. P.; Sadhu, J.; Ma, J.; Jacobs, K.; Kim, J.; Lee, K.; Eraker, J. H.; Li, X.; Sinha S.; Fang, N. et al. Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching. Nanotechnology 2013, 24, 225305.

    Google Scholar 

  80. Peng, K.; Lu, A.; Zhang, R.; Lee, S. T. Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Adv. Funct. Mater. 2008, 18, 3026–3035.

    Google Scholar 

  81. Zhang, M. L.; Peng, K. Q.; Fan, X.; Jie, J. S.; Zhang, R. Q.; Lee, S. T.; Wong, N. B. Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J. Phys. Chem. C 2008, 112, 4444–4450.

    Google Scholar 

  82. Peng, K. Q.; Fang, H.; Hu, J. J.; Wu, Y.; Zhu, J.; Yan, Y. J.; Lee, S. Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chem. Eur. J. 2006, 12, 7942–7947.

    Google Scholar 

  83. Lotty, O.; Petkov, N.; Georgiev, Y. M.; Holmes, J. D. Porous to nonporous transition in the morphology of metal assisted etched silicon nanowires. Jpn. J. Appl. Phys. 2012, 51, 11PE03–1.

    Google Scholar 

  84. McSweeney, W.; Lotty, O.; Mogili, N. V. V.; Glynn, C.; Geaney, H.; Tanner, D.; Holmes, J. D.; O’Dwyer, C. Doping controlled roughness and defined mesoporosity in chemically etched silicon nanowires with tunable conductivity. J. Appl. Phys. 2013, 114, 034309.

    Google Scholar 

  85. Hochbaum, A. I.; Gargas, D.; Hwang, Y. J.; Yang, P. D. Single crystalline mesoporous silicon nanowires. Nano Lett. 2009, 9, 3550–3554.

    Google Scholar 

  86. Liu, G. L.; Young, K. L.; Liao, X.; Personick, M. L.; Mirkin, C. A. Anisotropic nanoparticles as shape-directing catalysts for the chemical etching of silicon. J. Am. Chem. Soc. 2013, 135, 12196–12199.

    Google Scholar 

  87. Geyer, N.; Fuhrmann, B.; Huang, Z. P.; de Boor, J.; Leipner, H. S.; Werner, P. Model for the mass transport during metal-assisted chemical etching with contiguous metal films as catalysts. J. Phys. Chem. C 2012, 116, 13446.

    Google Scholar 

  88. Güder, F.; Yang, Y.; Küçükbayrak, U. M.; Zacharias, M. Tracing the migration history of metal catalysts in metal-assisted chemically etched silicon. ACS Nano 2013, 7, 1583–1590.

    Google Scholar 

  89. Bang, B. M.; Kim, H.; Song, H. K.; Cho, J.; Park, S. Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching. Energ. Environ. Sci. 2011, 4, 5013–5019.

    Google Scholar 

  90. Chiappini, C.; Liu, X. W.; Fakhoury, J. R.; Ferrari, M. Biodegradable porous silicon barcode nanowires with defined geometry. Adv Funct. Mater. 2010, 20, 2231–2239.

    Google Scholar 

  91. Chern, W.; Hsu, K.; Chun, I. S.; de Azeredo, B. P.; Ahmed, N.; Kim, K. H.; Zuo, J. M.; Fang, N.; Ferreira, P.; Li, X. L. Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays. Nano Lett. 2010, 10, 1582–1588.

    Google Scholar 

  92. Zhong, X.; Qu, Y. Q.; Lin, Y. C.; Liao, L.; Duan, X. F. Unveiling the formation pathway of single crystalline porous silicon nanowires. ACS Appl. Mater. Inter. 2011, 3, 261–270.

    Google Scholar 

  93. Qu, Y. Q.; Liao, L.; Li, Y. J.; Zhang, H.; Huang, Y.; Duan, X. F. Electrically conductive and optically active porous silicon nanowires. Nano Lett. 2009, 9, 4539–4543.

    Google Scholar 

  94. Guo, J.; Sun, A.; Chen, X.; Wang, C.; Manivannan, A. Cyclability study of silicon-carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochim. Acta 2011, 56, 3981–3987.

    Google Scholar 

  95. Lee, D. H.; Kim, Y.; Doerk, G. S.; Laboriante, I.; Maboudian, R. Strategies for controlling Si nanowire formation during Au-assisted electroless etching. J. Mater. Chem. 2011, 21, 10359–10363.

    Google Scholar 

  96. Chartier, C.; Bastide, S.; Lévy-Clément, C. Metal-assisted chemical etching of silicon in HF-H2O2. Electrochim. Acta 2008, 53, 5509–5516.

    Google Scholar 

  97. Li, S.; Ma, W.; Zhou, Y.; Chen, X.; Xiao, Y.; Ma, M.; Zhu W.; Wei, F. Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature. Nanoscale Res. Lett. 2014, 9, 196.

    Google Scholar 

  98. Balasundaram, K.; Sadhu, J. S.; Shin, J. C.; Azeredo, B.; Chanda, D.; Malik, M.; Hsu, K.; Rogers, J. A.; Ferreira, P.; Sinha, S. et al. Porosity control in metal assisted chemical etching of degenerately doped silicon. Nanotechnology 2012, 23, 305304.

    Google Scholar 

  99. Liu, R.; Zhang, F.; Con, C.; Cui, B.; Sun, B. Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching. Nanoscale Res. Lett. 2013, 8, 1–8.

    Google Scholar 

  100. Choi, H. J.; Baek, S.; Jang, H. S.; Kim, S. B.; Oh, B. Y.; Kim, J. H. Optimization of metal-assisted chemical etching process in fabrication of p-type silicon wire arrays. Curr. Appl. Phys. 2011, 11, S25–S29.

    Google Scholar 

  101. Lu, Y. T.; Barron, A. R. Nanopore-type black silicon anti-reflection layers fabricated by a one-step silver-assisted chemical etching. Phys. Chem. Chem. Phys. 2013, 15, 9862–9870.

    Google Scholar 

  102. Smith, Z. R.; Smith, R. L.; Collins, S. D. Mechanism of nanowire formation in metal assisted chemical etching. Electrochim. Acta 2013, 92, 139–147.

    Google Scholar 

  103. Qi, Y.; Wang, Z.; Zhang, M.; Yang, F.; Wang, X. A processing window for fabricating heavily doped silicon nanowires by metal-assisted chemical etching. J. Phys. Chem. C 2013, 117, 25090–25096.

    Google Scholar 

  104. Huang, Z. P.; Shimizu, T.; Senz, S.; Zhang, Z.; Geyer, N.; Gösele, U. Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon. J. Phys. Chem. C 2010, 114, 10683–10690.

    Google Scholar 

  105. Zuo, Z.; Cui, G.; Shi, Y.; Liu Y.; Ji, G Gold-thickness-dependent Schottky barrier height for charge transfer in metal-assisted chemical etching of silicon. Nanoscale Res. Lett. 2013, 8, 193.

    Google Scholar 

  106. Ge, S.; Jiang, K.; Lu, X.; Chen, Y.; Wang, R.; Fan, S. Orientation-controlled growth of single-crystal silicon-nanowire arrays. Adv. Mater. 2005, 17, 56–61.

    Google Scholar 

  107. He, R.; Gao, D.; Fan, R.; Hochbaum, A. I.; Carraro, C.; Maboudian, R.; Yang, P. Si nanowire bridges in microtrenches: Integration of growth into device fabrication. Adv. Mater. 2005, 17, 2098–2102.

    Google Scholar 

  108. Hochbaum, A. I.; Fan, R.; He, R.; Yang, P. Controlled growth of Si nanowire arrays for device integration. Nano Lett. 2005, 5, 457–460.

    Google Scholar 

  109. Li, X. L.; Gu, M.; Hu, S. Y.; Kennard, R.; Yan, P. F.; Chen, X. L.; Wang, C. M.; Sailor, M. J.; Zhang, J. G.; Liu, J. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nature Commun. 2014, 5, 4105.

    Google Scholar 

  110. Shimizu, T.; Xie, T.; Nishikawa, J.; Shingubara, S.; Senz, S.; Gösele, U. Synthesis of vertical high-density epitaxial Si(100) nanowire arrays on a Si(100) substrate using an anodic aluminum oxide template. Adv. Mater. 2007, 19, 917–920.

    Google Scholar 

  111. Nassiopoulou, A. G.; Gianneta, V.; Katsogridakis, C. Si nanowires by a single-step metal-assisted chemical etching process on lithographically defined areas: Formation kinetics. Nanoscale Res. Lett. 2011, 6, 597.

    Google Scholar 

  112. Chang, S. W.; Chuang, V. P.; Boles, S. T.; Ross, C. A.; Thompson, C. V. Densely packed arrays of ultra-high-aspect-ratio silicon nanowires fabricated using block-copolymer lithography and metal-assisted etching. Adv. Funct. Mater. 2009, 19, 2495–2500.

    Google Scholar 

  113. Huang, Z. P.; Zhang, X. X.; Reiche, M.; Liu, L. F.; Lee, W.; Shimizu, T.; Senz, S.; Gösele, U. Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. Nano Lett. 2008, 8, 3046–3051.

    Google Scholar 

  114. Huang, J.; Chiam, S. Y.; Tan, H. H.; Wang, S.; Chim, W. K. Fabrication of silicon nanowires with precise diameter control using metal nanodot arrays as a hard mask blocking material in chemical etching. Chem. Mater. 2010, 22, 4111–4116.

    Google Scholar 

  115. Huang, Z. P.; Shimizu, T.; Senz, S.; Zhang, Z.; Zhang, X. X.; Lee, W.; Geyer, N.; Gösele, U. Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred 〈100〉 etching directions. Nano Lett. 2009, 9, 2519–2525.

    Google Scholar 

  116. Lotfabad, E. M.; Kalisvaart, P.; Kohandehghan, A.; Cui, K.; Kupsta, M.; Farbod B.; Mitlin, D. Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes. J. Mater. Chem. A 2014, 2, 2504–2516.

    Google Scholar 

  117. Cho, J. H.; Picraux, S. T. Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands. Nano Lett. 2013, 13, 5740–5747.

    Google Scholar 

  118. Peng, K. Q.; Wu, Y.; Fang, H.; Zhong, X. Y.; Xu, Y.; Zhu, J. Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew. Chem. Inter. Edit. 2005, 44, 2737–2742.

    Google Scholar 

  119. Kim, J. G.; Shi, D. Q.; Park, M. S.; Jeong, G.; Heo, Y. U.; Seo, M.; Kim, Y. J.; Kim, J. H.; Dou, S. X. Controlled Ag-driven superior rate-capability of Li4Ti5O12 anodes for lithium rechargeable batteries. Nano Res. 2013, 6, 365–372.

    Google Scholar 

  120. Chen, C. Y.; Wu, C. S.; Chou, C. J.; Yen, T. J. Morphological control of single-crystalline silicon nanowire arrays near room temperature. Adv. Mater. 2008, 20, 3811–3815.

    Google Scholar 

  121. Chen, H.; Wang, H.; Zhang, X. H.; Lee, C. S.; Lee, S. T. Wafer-scale synthesis of single-crystal zigzag silicon nanowire arrays with controlled turning angles. Nano Lett. 2010, 10, 864–868.

    Google Scholar 

  122. Bai, F.; To, W. K.; Huang, Z. Porosification-induced back-bond weakening in chemical etching of n-Si(111). J. Phys. Chem. C 2013, 117, 2203–2209.

    Google Scholar 

  123. Tsujino, K.; Matsumura, M. Morphology of nanoholes formed in silicon by wet etching in solutions containing HF and H2O2 at different concentrations using silver nanoparticles as catalysts. Electrochim. Acta 2007, 53, 28–34.

    Google Scholar 

  124. Tsujino, K.; Matsumura, M. Boring deep cylindrical nanoholes in silicon using silver nanoparticles as a catalyst. Adv. Mater. 2005, 17, 1045–1047.

    Google Scholar 

  125. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4302.

    Google Scholar 

  126. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Google Scholar 

  127. Dahn, J. R.; Zheng, T.; Liu, Y.; Xue, J. S. Mechanisms for lithium insertion in carbonaceous materials. Science 1995, 270, 590–593.

    Google Scholar 

  128. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725–763.

    Google Scholar 

  129. Linden, D.; Reddy, T. B. Handbook of Batteries, 3rd edn; McGraw-Hill, 2002.

    Google Scholar 

  130. Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

    Google Scholar 

  131. Yang, Y.; Jeong, S.; Hu, L. B.; Wu, H.; Lee, S. W.; Cui, Y. Transparent lithium-ion batteries. P. Natl. Acad. Sci. USA 2011, 108, 13013–13018.

    Google Scholar 

  132. Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourga, M. E.; Lubers, A. M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 2009, 38, 226–252.

    Google Scholar 

  133. Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.; Krause, L. J.; Dahn, J. R. Colossal reversible volume changes in lithium alloys. Electrochem. Solid ST. 2001, 4, A137–A140.

    Google Scholar 

  134. Huggins, R. A. Lithium alloy negative electrodes. J. Power Sources 1999, 81, 13–19.

    Google Scholar 

  135. Wen, C. J.; Huggins, R. A. Chemical diffusion in intermediate phases in the lithium-silicon system. J. Solid State Chem. 1981, 37, 271–278.

    Google Scholar 

  136. Boukamp, B. A.; Lesh, G. C.; Huggins, R. A. All-solid lithium electrodes with mixed conductor matrix. J. Electrochem. Soc. 1981, 128, 725–729.

    Google Scholar 

  137. Shodai, T.; Okada, S.; Tobishima, S. I.; Yamaki, J. I. Study of Li3 − x MxN (M: Co, Ni or Cu) system for use as anode material in lithium rechargeable cells. Solid State Ionics 1996, 86–88, Part 2, 785–789.

    Google Scholar 

  138. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    Google Scholar 

  139. Su, D. W.; Dou, S. X.; Wang, G. X. Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Res. 2014, 7, 794–803.

    Google Scholar 

  140. Kim, S. W.; Lee, H. W.; Muralidharan, P.; Seo, D. H.; Yoon, W. S.; Kim, D. K.; Kang, K., Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Res. 2011, 4, 505–510.

    Google Scholar 

  141. Vlad, A.; Reddy, A. L. M.; Ajayan, A.; Singh, N.; Gohy, J. F.; Melinte, S.; Ajayan, P. M. Roll up nanowire battery from silicon chips. P. Natl. Acad. Sci. USA 2012, 109, 15168–15173.

    Google Scholar 

  142. Li, J.; Dahn, J. R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 2007, 154, A156–A161.

    Google Scholar 

  143. Beaulieu, L. Y.; Hatchard, T. D.; Bonakdarpour, A.; Fleischauer, M. D.; Dahn, J. R. Reaction of Li with alloy thin films studied by in situ AFM. J. Electrochem. Soc. 2003, 150, A1457–A1464.

    Google Scholar 

  144. Zhang, X. W.; Patil, P. K.; Wang, C. S.; Appleby, A. J.; Little, F. E.; Cocke, D. L., Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures. J. Power Sources 2004, 125, 206–213.

    Google Scholar 

  145. Maranchi, J. P.; Hepp, A. F.; Evans, A. G.; Nuhfer, N. T.; Kumta, P. N. Interfacial properties of the a-Si/Cu: Activeinactive thin-film anode system for lithium-ion batteries. J. Electrochem. Soc. 2006, 153, A1246–A1253.

    Google Scholar 

  146. Maranchi, J. P.; Hepp, A. F.; Kumta, P. N. High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem. Solid ST. 2003, 6, A198–A201.

    Google Scholar 

  147. Park, M. S.; Lee, Y. J.; Rajendran, S.; Song, M. S.; Kim, H. S.; Lee, J. Y. Electrochemical properties of Si/Ni alloygraphite composite as an anode material for Li-ion batteries. Electrochim. Acta 2005, 50, 5561–5567.

    Google Scholar 

  148. Szczech, J. R.; Jin, S. Nanostructured silicon for high capacity lithium battery anodes. Energ. Environ. Sci. 2011, 4, 56–72.

    Google Scholar 

  149. Jung, H. J.; Park, M.; Yoon, Y. G.; Kim, G. B.; Joo, S. K. Amorphous silicon anode for lithium-ion rechargeable batteries. J. Power Sources 2003, 115, 346–351.

    Google Scholar 

  150. Ohara, S.; Suzuki, J.; Sekine, K.; Takamura, T. A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life. J. Power Sources 2004, 136, 303–306.

    Google Scholar 

  151. Obrovac, M. N.; Krause, L. J. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 2007, 154, A103–A108.

    Google Scholar 

  152. Ryu, J. H.; Kim, J. W.; Sung, Y. E.; Oh, S. M. Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid ST. 2004, 7, A306–A309.

    Google Scholar 

  153. Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 2012, 6, 1522–1531.

    Google Scholar 

  154. McDowell, M. T.; Lee, S. W.; Harris, J. T.; Korgel, B. A.; Wang, C. M; Nix, W. D.; Cui, Y. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 2013, 13, 758–764.

    Google Scholar 

  155. Chon, M. J.; Sethuraman, V. A.; McCormick, A.; Srinivasan, V.; Guduru, P. R. Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys. Rev. Lett. 2011, 107, 045503.

    Google Scholar 

  156. Ge, M.; Fang, X.; Rong, J.; Zhou, C. Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology 2013, 24, 422001.

    Google Scholar 

  157. Yang, H.; Huang, S.; Huang, X.; Fan, F. F.; Liang, W. T.; Liu, X. H.; Chen, L. Q.; Huang, J. Y.; Li, J.; Zhu, T. et al. Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett. 2012, 12, 1953–1958.

    Google Scholar 

  158. Ge, M. Y.; Rong, J. P.; Fang, X.; Zhou, C. W. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012, 12, 2318–2323.

    Google Scholar 

  159. Armstrong, M. J.; O’Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1–62.

    Google Scholar 

  160. Ohara, S.; Suzuki, J.; Sekine, K.; Takamura, T. Li insertion/extraction reaction at a Si film evaporated on a Ni foil. J. Power Sources 2003, 119, 591–596.

    Google Scholar 

  161. Uehara, M.; Suzuki, J.; Tamura, K.; Sekine, K.; Takamura, T. Thick vacuum deposited silicon films suitable for the anode of Li-ion battery. J. Power Sources 2005, 146, 441–444.

    Google Scholar 

  162. Takamura, T.; Ohara, S.; Uehara, M.; Suzuki, J.; Sekine, K. A vacuum deposited Si film having a Li extraction capacity over 2,000 mAh/g with a long cycle life. J. Power Sources 2004, 129, 96–100.

    Google Scholar 

  163. Li, F.; Yue, H.; Yang, Z.; Li, X.; Qin, Y.; He, D. Flexible free-standing graphene foam supported silicon films as high capacity anodes for lithium ion batteries. Mater. Lett. 2014, 128, 132–135.

    Google Scholar 

  164. Zhao, G. Y.; Meng, Y. F.; Zhang, N. Q.; Sun, K. N. Electrodeposited Si film with excellent stability and high rate performance for lithium-ion battery anodes. Mater. Lett. 2012, 76, 55–58.

    Google Scholar 

  165. Goldman, J. L.; Cason, M. W.; Wetzel, D. J.; Vieker, H.; Beyer, A.; Gölzhäuser, A.; Gewirth, A. A.; Nuzzo, R. G. Directed transport as a route to improved performance in micropore-modified encapsulated multilayer silicon electrodes. J. Electrochem. Soc. 2013, 160, A1746–A1752.

    Google Scholar 

  166. Hatchard, T. D.; Topple, J. M.; Fleischauer, M. D.; Dahn, J. R. Electrochemical performance of SiAlSn films prepared by combinatorial sputtering. Electrochem. Solid-State Lett. 2003, 6, A129–A132.

    Google Scholar 

  167. Hwang, C. M.; Lim, C. H.; Park, J. W. Evaluation of Si/Ge multi-layered negative film electrodes using magnetron sputtering for rechargeable lithium ion batteries. Thin Solid Films 2011, 519, 2332–2338.

    Google Scholar 

  168. Wilson, A. M.; Dahn, J. R. Lithium insertion in carbons containing nanodispersed silicon. J. Electrochem. Soc. 1995, 142, 326–332.

    Google Scholar 

  169. Li, H.; Huang, X. J.; Chen, L. Q.; Wu, Z. G.; Liang, Y. A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem Solid ST. 1999, 2, 547–549.

    Google Scholar 

  170. Li, H.; Huang, X. J.; Chen, L. Q.; Zhou, G. W.; Zhang, Z.; Yu, D. P.; Mo, Y. J.; Pei, N. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics 2000, 135, 181–191.

    Google Scholar 

  171. Lee, H. Y.; Lee, S. M. Graphite-FeSi alloy composites as anode materials for rechargeable lithium batteries. J. Power Sources 2002, 112, 649–654.

    Google Scholar 

  172. Weydanz, W. J.; Wohlfahrt-Mehrens, M.; Huggins, R. A. A room temperature study of the binary lithium-silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries. J. Power Sources 1999, 81, 237–242.

    Google Scholar 

  173. Hwang, S. M.; Lee, H. Y.; Jang, S. W.; Lee, S. M.; Lee, S. J.; Baik, H. K.; Lee, J. Y. Lithium insertion in SiAg powders produced by mechanical alloying. Electrochem. Solid-State Lett. 2001, 4, A97–A100.

    Google Scholar 

  174. Kim, I. S.; Blomgren, G. E.; Kumta, P. N. Nanostructured Si/TiB2 composite anodes for Li-ion batteries. Electrochem. Solid-State Lett. 2003, 6, A157–A161.

    Google Scholar 

  175. Dimov, N.; Kugino, S.; Yoshio, M. Carbon-coated silicon as anode material for lithium ion batteries: Advantages and limitations. Electrochim. Acta 2003, 48, 1579–1587.

    Google Scholar 

  176. Yang, J.; Wang, B. F.; Wang, K.; Liu, Y.; Xie, J. Y.; Wen, Z. S. Si/C composites for high capacity lithium storage materials. Electrochem. Solid ST. 2003, 6, A154–A156.

    Google Scholar 

  177. Beaulieu, L. Y.; Hewitt, K. C.; Turner, R. L.; Bonakdarpour, A.; Abdo, A. A.; Christensen, L.; Eberman, K. W.; Krause, L. J.; Dahn, J. R. The electrochemical reaction of Li with amorphous Si-Sn alloys. J. Electrochem. Soc. 2003, 150, A149–A156.

    Google Scholar 

  178. Kim, J. W.; Ryu, J. H.; Lee, K. T.; Oh, S. M. Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries. J. Power Sources 2005, 147, 227–233.

    Google Scholar 

  179. Kim, H. S.; Chung, K. Y.; Cho, L. W. Effect of carbon-coated silicon/graphite composite anode on the electrochemical properties. B. Korean Chem. Soc. 2008, 29, 1965–1968.

    Google Scholar 

  180. Dong, H.; Ai, X. P.; Yang, H. X. Carbon/Ba-Fe-Si alloy composite as high capacity anode materials for Li-ion batteries. Electrochem. Commun. 2003, 5, 952–957.

    Google Scholar 

  181. Jung, Y. S.; Lee, K. T.; Oh, S. M. Si-carbon core-shell composite anode in lithium secondary batteries. Electrochim. Acta 2007, 52, 7061–7067.

    Google Scholar 

  182. Xu, Y. H.; Yin, G. P.; Ma, Y. L.; Zuo, P. J.; Cheng, X. Q. Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source. J. Mater. Chem. 2010, 20, 3216–3220.

    Google Scholar 

  183. Kim, H.; Cho, J. Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. Nano Lett. 2008, 8, 3688–3691.

    Google Scholar 

  184. Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358.

    Google Scholar 

  185. Ge, M. Y.; Rong, J. P.; Fang, X.; Zhang, A. Y.; Lu, Y. H.; Zhou, C. W. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013, 6, 174–181.

    Google Scholar 

  186. Arie, A. A.; Chang, W.; Lee, J. K. Electrochemical characteristics of semi conductive silicon anode for lithium polymer batteries. J. Electroceram. 2010, 24, 308–312.

    Google Scholar 

  187. Kong, M. H.; Noh, J. H.; Byun, D. J.; Lee, J. K. Electrochemical characteristics of phosphorus doped silicon and graphite composite for the anode materials of lithium secondary batteries. J. Electroceram. 2009, 23, 376–381.

    Google Scholar 

  188. Garnett, E. C.; Tseng, Y. C.; Khanal, D. R.; Wu, J. Q.; Bokor, J.; Yang, P. D. Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements. Nat. Nanotechnol. 2009, 4, 311–314.

    Google Scholar 

  189. Xu, W. L.; Vegunta, S. S. S.; Flake, J. C. Surface-modified silicon nanowire anodes for lithium-ion batteries. J. Power Sources 2011, 196, 8583–8589.

    Google Scholar 

  190. Xu, W. L.; Flake, J. C. Composite silicon nanowire anodes for secondary lithium-ion cells. J. Electrochem. Soc. 2010, 157, A41–A45.

    Google Scholar 

  191. Huang, J. Y.; Zhong, Li.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Sabramanian, A. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515–1520.

    Google Scholar 

  192. Huang, R.; Zhu, J. Silicon nanowire array films as advanced anode materials for lithium-ion batteries. Mater. Chem. Phys. 2010, 121, 519–522.

    Google Scholar 

  193. Zhang, Q. F.; Zhang, W. X.; Wan, W. H.; Cui, Y.; Wang, E. G. Lithium insertion in silicon nanowires: An ab initio study. Nano Lett. 2010, 10, 3243–3249.

    Google Scholar 

  194. Peng, B.; Cheng, F. Y.; Tao, Z. L.; Chen, J. Lithium transport at silicon thin film: Barrier for high-rate capability anode. J. Chem. Phys. 2010, 133, 034701.

    Google Scholar 

  195. Long, B. R.; Chan, M. K. Y.; Greeley, J. P.; Gewirth, A. A. Dopant modulated Li insertion in Si for battery anodes: Theory and experiment. J. Phys. Chem. C 2011, 115, 18916–18921.

    Google Scholar 

  196. Rousselot, S.; Gauthier, M.; Mazouzi, D.; Lestriez, B.; Guyomard, D.; Roué, L. Synthesis of boron-doped Si particles by ball milling and application in Li-ion batteries. J. Power Sources 2012, 202, 262–268.

    Google Scholar 

  197. McSweeney, W.; Lotty, O.; Glynn, C.; Geaney, H.; Holmes, J. D.; O’Dwyer, C. The influence of carrier density and doping type on lithium insertion and extraction processes at silicon surfaces. Electrochim. Acta 2014, 135, 356–367.

    Google Scholar 

  198. Wang, G. X.; Sun, L.; Bradhurst, D. H.; Zhong, S.; Dou, S. X.; Liu, H. K. Innovative nanosize lithium storage alloys with silica as active centre. J. Power Sources 2000, 88, 278–281.

    Google Scholar 

  199. Zuo, P.; Yang, W.; Cheng, X.; Yin, G. Enhancement of the electrochemical performance of silicon/carbon composite material for lithium ion batteries. Ionics 2011, 17, 87–90.

    Google Scholar 

  200. Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B. Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid ST. 2003, 6, A194–A197.

    Google Scholar 

  201. Takamura, T.; Uehara, M.; Suzuki, J.; Sekine, K.; Tamura, K. High capacity and long cycle life silicon anode for Li-ion battery. J. Power Sources 2006, 158, 1401–1404.

    Google Scholar 

  202. Green, M.; Fielder, E.; Scrosati, B.; Wachtler, M.; Moreno, J. S. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 2003, 6, A75–A79.

    Google Scholar 

  203. Xu, W. L.; Flake, J. C. Composite silicon nanowire anodes for secondary lithium-ion cells. J. Electrochem. Soc. 2010, 157, A41–A45.

    Google Scholar 

  204. Kang, K.; Lee, H. S.; Han, D. W.; Kim, G. S.; Lee, D.; Lee, G.; Kang, Y. M.; Jo, M. H. Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery. Appl. Phys. Lett. 2010, 96, 053110.

    Google Scholar 

  205. Chan, C. K.; Patel, R. N.; O’Connell, M. J.; Korgel, B. A.; Cui, Y. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 2010, 4, 1443–1450.

    Google Scholar 

  206. Wan, J.; Kaplan, A. F.; Zheng, J.; Han, X.; Chen, Y.; Weadock, N. J.; Faenza, N.; Lacey, S.; Li, T.; Guo, J. et al. Two dimensional silicon nanowalls for lithium ion batteries. J Mater. Chem. A 2014, 2, 6051–6057.

    Google Scholar 

  207. Cui, L. F.; Yang, Y.; Hsu, C. M.; Cui, Y., Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 2009, 9, 3370–3374.

    Google Scholar 

  208. Cui, L. F.; Ruffo, R.; Chan, C. K.; Peng, H. L.; Cui, Y., Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 2009, 9, 491–495.

    Google Scholar 

  209. Xie, J.; Wang, G.; Huo, Y.; Zhang, S.; Cao, G.; Zhao, X. Nanostructured silicon spheres prepared by a controllable magnesiothermic reduction as anode for lithium ion batteries. Electrochim. Acta 2014, 135, 94–100.

    Google Scholar 

  210. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.

    Google Scholar 

  211. Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.

    Google Scholar 

  212. Hu, L. B.; Wu, H.; Hong, S. S.; Cui, L. F.; McDonough, J. R.; Bohy, S.; Cui, Y. Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. Chem. Commun. 2011, 47, 367–369.

    Google Scholar 

  213. Huang, R.; Fan, X.; Shen, W. C.; Zhu, J. Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes. Appl. Phys. Lett. 2009, 95, 133119.

    Google Scholar 

  214. Yang, Y.; McDowell, M. T.; Jackson, A.; Cha, J. J.; Hong, S. S.; Cui, Y. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett. 2010, 10, 1486–1491.

    Google Scholar 

  215. Osiak, M.; Geaney, H.; Armstrong, E.; O’Dwyer, C. Structuring materials for lithium-ion batteries: Advancements in nanomaterial structure, composition, and defined assembly on cell performance. J. Mater. Chem. A 2014, 2, 9433–9460.

    Google Scholar 

  216. Foell, H.; Hartz, H.; Ossei-Wusu, E.; Carstensen, J.; Riemenschneider, O. Si nanowire arrays as anodes in Li ion batteries. Phys. Status Solidi RRL. 2010, 4, 4–6.

    Google Scholar 

  217. Díaz, C.; Valenzuela, M. L.; Bravo, D.; Lavayen, V.; O’Dwyer, C., Synthesis and characterization of cyclotriphosphazene containing silicon as single solid state precursors for the formation of silicon/phosphorus nanostructured materials. Inorg. Chem. 2008, 47, 11561–11569.

    Google Scholar 

  218. Diaz, C.; Valenzuela, M. L.; Ushak, S.; Lavayen, V.; O’Dwyer, C. Nanostructured silicon-containing materials derived from solid-state pyrolysis of sililated polyphosphazene derivatives. J. Nanosci. Nanotechnol. 2009, 9, 1825–1831.

    Google Scholar 

  219. Wagner, M. W.; Schmied, M.; Preishuber-Pflugl, P.; Stelzer, F.; Besenhard, J. O.; Winter, M. In 10th International Meeting of Lithium Batteries, Como, Italy, 2000.

    Google Scholar 

  220. Wu, M.; Sabisch, J. E. C.; Song, X.; Minor, A. M.; Battaglia, V. S.; Liu, G. In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes. Nano Lett. 2013, 13, 5397–5402.

    Google Scholar 

  221. Jeong, Y. K.; Kwon, T. W.; Lee, I.; Kim, T. S.; Coskun, A.; Choi, J. W. Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano Lett. 2014, 14, 864–870.

    Google Scholar 

  222. Hwa, Y.; Kim, W. S.; Hong, S. H.; Sohn, H. J. High capacity and rate capability of core-shell structured nano-Si/C anode for Li-ion batteries. Electrochim. Acta 2012, 71, 201–205.

    Google Scholar 

  223. Kuksenko, S.; Konovalenko, I. Silicon nanopowder as active material for hybrid electrodes of lithium-ion batteries. Russ. J. Appl. Chem. 2011, 84, 1179–1187.

    Google Scholar 

  224. Lai, J.; Guo, H. J.; Wang, Z. X.; Li, X. H.; Zhang, X. P.; Wu, F. X.; Yue, P., Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries. J. Alloys Compd. 2012, 530, 30–35.

    Google Scholar 

  225. Chan, C. K.; Ruffo, R.; Hong, S. S.; Huggins, R. A.; Cui, Y. Structural and electrochemical study of the reaction of lithium with silicon nanowires. J. Power Sources 2009, 189, 34–39.

    Google Scholar 

  226. Chan, C. K.; Zhang, X. F.; Cui, Y. High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 2008, 8, 307–309.

    Google Scholar 

  227. Wu, Y.; Yang, P. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 2001, 123, 3165–3166.

    Google Scholar 

  228. Du, N.; Zhang, H.; Fan, X.; Yu, J. X.; Yang, D. R. Large-scale synthesis of silicon arrays of nanowire on titanium substrate as high-performance anode of Li-ion batteries. J. Alloys Compd. 2012, 526, 53–58.

    Google Scholar 

  229. Cho, J. H.; Picraux, S. T. Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands. Nano Lett. 2013, 13, 5740–5747.

    Google Scholar 

  230. Gohier, A.; Laik, B.; Pereira-Ramos, J. P.; Cojocaru, C. S.; Tran-Van, P. Influence of the diameter distribution on the rate capability of silicon nanowires for lithium-ion batteries. J. Power Sources 2012, 203, 135–139.

    Google Scholar 

  231. Perea, D. E.; Hemesath, E. R.; Schwalbach, E. J.; Lensch-Falk, J. L.; Voorhees, P. W.; Lauhon, L. J. Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire. Nat. Nanotechnol. 2009, 4, 315–319.

    Google Scholar 

  232. Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A. Tin-seeded silicon nanowires for high capacity li-ion batteries. Chem. Mater. 2012, 24, 3738–3745.

    Google Scholar 

  233. He, R. R.; Gao, D.; Fan, R.; Hochbaum, A. I.; Carraro, C.; Maboudian, R.; Yang, P. D. Si nanowire bridges in microtrenches: Integration of growth into device fabrication. Adv. Mater. 2005, 17, 2098–2102.

    Google Scholar 

  234. Heitsch, A. T.; Akhavan, V. A.; Korgel, B. A., Rapid SFLS synthesis of Si nanowires using Trisilane with in situ alkyl-amine passivation. Chem. Mat. 2011, 23, 2697–2699.

    Google Scholar 

  235. Bogart, T. D.; Lu, X.; Korgel, B. A. Precision synthesis of silicon nanowires with crystalline core and amorphous shell. Dalton Trans. 2013, 42, 12675–12680.

    Google Scholar 

  236. Mullane, E.; Kennedy, T.; Geaney, H.; Dickinson, C.; Ryan, K. M. Synthesis of tin catalyzed silicon and germanium nanowires in a solvent-vapor system and optimization of the seed/nanowire interface for dual lithium cycling. Chem. Mater. 2013, 25, 1816–1822.

    Google Scholar 

  237. Geaney, H.; Kennedy, T.; Dickinson, C.; Mullane, E.; Singh, A.; Laffir, F.; Ryan, K. M. High density growth of indium seeded silicon nanowires in the vapor phase of a high boiling point solvent. Chem. Mater. 2012, 24, 2204–2210.

    Google Scholar 

  238. Zhao, X.; Rui, X.; Zhou, W.; Tan, L.; Yan, Q.; Lu, Z.; Hng, H. H. Growth of Si nanowires in porous carbon with enhanced cycling stability for Li-ion storage. J. Power Sources 2014, 250, 160–165.

    Google Scholar 

  239. Gu, M.; Wang, Z. G.; Connell, J. G.; Perea, D. E.; Lauhon, L. J.; Gao, F.; Wang, C. M. Electronic origin for the phase transition from amorphous LixSi to crystalline Li15Si4. ACS Nano 2013, 7, 6303–6309.

    Google Scholar 

  240. Bogart, T. D.; Lu, X. T.; Gu, M.; Wang, C. M.; Korgel, B. A. Enhancing the lithiation rate of silicon nanowires by the inclusion of tin. RSC Adv. 2014, 4, 42022–42028.

    Google Scholar 

  241. Yin, J. T.; Wada, M.; Yamamoto, K.; Kitano, Y.; Tanase, S.; Sakai, T. Micrometer-scale amorphous Si thin-film electrodes fabricated by electron-beam deposition for Li-ion batteries. J. Electrochem. Soc. 2006, 153, A472–A477.

    Google Scholar 

  242. Ohara, S.; Suzuki, J. J.; Sekine, K.; Takamura, T. Attainment of high rate capability of Si film as the anode of Li-ion batteries. Electrochemistry 2003, 71, 1126–1128.

    Google Scholar 

  243. Limthongkul, P.; Jang, Y. I.; Dudney, N. J.; Chiang, Y. M., Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater. 2003, 51, 1103–1113.

    Google Scholar 

  244. Kim, G.; Jeong, S.; Shin, J. H.; Cho, J.; Lee, H. 3D amorphous silicon on nanopillar copper electrodes as anodes for high-rate lithium-ion batteries. ACS Nano 2014, 8, 1907–1912.

    Google Scholar 

  245. Li, X. P.; Xiao, Y. J.; Yan, C. L.; Zhou, K. Y.; Miclea, P. T.; Meyer, S.; Schweizer, S. L.; Sprafke, A.; Lee, J. H.; Wehrspohn, R. B. Self-purification model for metal-assisted chemical etching of metallurgical silicon. Electrochim. Acta 2014, 138, 476–480.

    Google Scholar 

  246. Xu, Y. H.; Yin, G. P.; Ma, Y. L.; Zuo, P. J.; Cheng, X. Q. Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source. J. Mater. Chem. 2010, 20, 3216–3220.

    Google Scholar 

  247. Lee, K. T.; Jung, Y. S.; Oh, S. M. Synthesis of tinencapsulated spherical hollow carbon for anode material in lithium secondary batteries. J. Am. Chem. Soc. 2003, 125, 5652–5653.

    Google Scholar 

  248. Zhang, T.; Gao, J.; Zhang, H. P.; Yang, L. C.; Wu, Y. P.; Wu, H. Q. Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries. Electrochem. Commun. 2007, 9, 886–890.

    Google Scholar 

  249. Wang, D.; Yang, Z.; He, D. Electrochemical performances of nanorod structured Si1-xGex anodes. Mater. Lett. 2014, 128, 163–166.

    Google Scholar 

  250. Tu, J.; Hu, L.; Wang, W.; Hou, J.; Zhu, H.; Jiao, S. In-situ synthesis of silicon/polyaniline core/shell and its electrochemical performance for lithium-ion batteries. J. Electrochem. Soc. 2013, 160, A1916–A1921.

    Google Scholar 

  251. Wang, J. Z.; Du, N.; Zhang, H.; Yu, J. X.; Yang, D. R. Cu-Si1−x Gex core-shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries. J. Power Sources 2012, 208, 434–439.

    Google Scholar 

  252. Luo, J.; Zhao, X.; Wu, J.; Jang, H. D.; Kung, H. H.; Huang, J. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 2012, 3, 1824–1829.

    Google Scholar 

  253. Chen, X. L.; Gerasopoulos, K.; Guo, J. C.; Brown, A.; Wang, C. S.; Ghodssi, R.; Culver, J. N. A patterned 3D silicon anode fabricated by electrodeposition on a virus-structured current collector. Adv. Funct. Mater. 2011, 21, 380–387.

    Google Scholar 

  254. Song, T.; Xia, J. L.; Lee, J. H.; Lee, D. H.; Kwon, M. S.; Choi, J. M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710–1716.

    Google Scholar 

  255. Hwang, C. M.; Lim, C. H.; Park, J. W. Evaluation of Si/Ge multi-layered negative film electrodes using magnetron sputtering for rechargeable lithium ion batteries. Thin Solid Films 2011, 519, 2332–2338.

    Google Scholar 

  256. Bang, B. M.; Kim, H.; Lee, J. P.; Cho, J.; Park, S. Mass production of uniform-sized nanoporous silicon nanowire anodes via block copolymer lithography. Energy Environ. Sci. 2011, 4, 3395–3399.

    Google Scholar 

  257. Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.

    Google Scholar 

  258. Wang, B.; Li, X.; Qiu, T.; Luo, B.; Ning, J.; Li, J.; Zhang, X.; Liang M.; Zhi, L. High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering. Nano Lett. 2013, 13, 5578–5584.

    Google Scholar 

  259. Chadwick, E. G.; Mogili, V.; O’Dwyer, C.; Moore, J.; Fletcher, J.; Laffir, F.; Armstrong, G.; Tanner, D. A. Compositional characterization of metallurgical grade silicon and porous silicon nanosponge particles. RSC Adv. 2013, 3, 19393–19402.

    Google Scholar 

  260. Chakrapani, V.; Rusli, F.; Filler, M. A.; Kohl, P. A., Silicon nanowire anode: Improved battery life with capacity-limited cycling. J. Power Sources 2012, 205, 433–438.

    Google Scholar 

  261. Liu, X. H. et al. Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett. 2011, 11, 2251–2258.

    Google Scholar 

  262. Ge, M.; Rong, J.; Fang, X.; Zhang, A.; Lu, Y.; Zhou, C. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013, 6, 174–181.

    Google Scholar 

  263. Zhou, X. S.; Yin, Y. X.; Cao, A. M.; Wan, L. J.; Guo, Y. G. Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode. ACS Appl. Mater. Interfaces 2012, 4, 2824–2828.

    Google Scholar 

  264. Zhang, P.; Wang, L.; Xie, J.; Su, L.; Ma, C. A. Micro/nano-complex-structure SiOx-PANI-Ag composites with homogeneously-embedded Si nanocrystals and nanopores as high-performance anodes for lithium ion batteries. J. Mater. Chem. A 2014, 2, 3776–3782.

    Google Scholar 

  265. Tao, H. C.; Fan, L. Z.; Qu, X. Facile synthesis of ordered porous Si@C nanorods as anode materials for Li-ion batteries. Electrochim. Acta 2012, 71, 194–200.

    Google Scholar 

  266. Zhu, Y.; Liu, W.; Zhang, X.; He, J.; Chen, J.; Wang, Y.; Cao, T. Directing silicon-graphene self-assembly as a core/shell anode for high-performance lithium-ion batteries. Langmuir 2013, 29, 744–749.

    Google Scholar 

  267. Shen, J.; Ahn, D.; Raj, R. C-rate performance of silicon oxycarbide anodes for Li+ batteries enhanced by carbon nanotubes. J. Power Sources 2011, 196, 2875–2878.

    Google Scholar 

  268. Guo, C.; Wang, D.; Liu, T.; Zhu J.; Lang, X. A three dimensional SiOx/C@RGO nanocomposite as a high energy anode material for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 3521–3527.

    Google Scholar 

  269. Bogart, T. D.; Oka, D.; Lu, X.; Gu, M.; Wang, C.; Korgel, B. A. Lithium ion battery peformance of silicon nanowires with carbon skin. ACS Nano 2013, 8, 915–922.

    Google Scholar 

  270. Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.

    Google Scholar 

  271. Magasinki, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353.

    Google Scholar 

  272. Thakur, M.; Sinsabaugh, S.; Isaacson, M. J.; Wong, M. S.; Biswal, S. L. Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries. Sci. Rep. 2012, 2, 795.

    Google Scholar 

  273. Xiao, X.; Liu, X.; Wang, L.; Zhao, H.; Hu, Z.; He, X.; Li, Y. LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. Nano Res. 2012, 5, 395–401.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colm O’Dwyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McSweeney, W., Geaney, H. & O’Dwyer, C. Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes. Nano Res. 8, 1395–1442 (2015). https://doi.org/10.1007/s12274-014-0659-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0659-9

Keywords

Navigation