Skip to main content
Log in

Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, we combined silver nanowires with cupro fabrics using a dipping-drying method to prepare electrically conductive fabrics. The silver nanowires were first adhered to and then absorbed by microfibers to form electrically conductive fibers. They also filled the gaps and spaces between the microfibers, and were stacked or piled together to form networks with high electrical conductivity. The electrically conductive fabric had low resistance and good stretchability, e.g., 0.0047–0.0091 Ω in the strain range of 0–190%. They also exhibited stable electrical conductivity, as well as excellent flexibility, which remained even when the fabric was stretched, shrunk, or bent. The results show that the electrically conductive fabric can be used as a smart textile, especially in fields associated with weaving, clothing, food products, lifestyle products, medicine, biology, electronics, aviation, and military equipment and accessories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, J. L.; Meng, H. P.; Li, G. Q.; Ibekwe, S. I. A review of stimuli-responsive polymers for smart textile applications. Smart Mater. Struct. 2012, 21, 053001.

    Article  Google Scholar 

  2. Castano, L. M.; Flatau, A. B. Smart fabric sensors and e-textile technologies: a review. Smart Mater. Struct. 2014, 23, 053001.

    Article  Google Scholar 

  3. Akerfeldt, M.; Straat, M.; Walkenstrom, P. Electrically conductive textile coating with a PEDOT-PSS dispersion and a polyurethane binder. Text. Res. J. 2013, 83, 618–627.

    Article  Google Scholar 

  4. Bashir, T.; Skrifvars, M.; Persson, N. K. Production of highly conductive textile viscose yarns by chemical vapor deposition technique: a route to continuous process. Polym. Adv. Technol. 2011, 22, 214–2221.

    Article  Google Scholar 

  5. Anderson, E. B.; Ingildeev, D.; Hermanutz, F.; Muller, A.; Schweizer, M.; Buchmeiser, M. R. Synthesis and dry-spinning fibers of sulfinyl-based poly(p-phenylene vinylene) (ppv) for semi-conductive textile applications. J. Mater. Chem. 2012, 22, 11851–11860.

    Article  Google Scholar 

  6. Yang, K.; Torah, R.; Wei, Y.; Beeby, S.; Tudor, J. Waterproof and durable screen printed silver conductive tracks on textiles. Text. Res. J. 2013, 83, 2023–2031.

    Article  Google Scholar 

  7. Maity, S.; Chatterjee, A.; Singh, B.; Singh, A. P. Polypyrrole based electro-conductive textiles for heat generation. J. Text. Institu. 2014, 105, 887–893.

    Article  Google Scholar 

  8. Hu, L. B.; Pasta, M.; La Mantia, F.; Cui, L. F.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714.

    Article  Google Scholar 

  9. Lim, Z. H.; Chia, Z. X.; Kevin, M.; Wong, A. S. W.; Ho, G. W. A facile approach towards ZnO nanorods conductive textile for room temperature multifunctional sensors. Sensor Actuat. B 2010, 151, 121–126.

    Article  Google Scholar 

  10. Nateghi, M. R.; Dehghan, S.; Shateri-Khalilabad, M. A facile route for fabrication of conductive hydrophobic textile materials using N-octyl/N-perfluorohexyl substituted polypyrrole. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 648–652.

    Article  Google Scholar 

  11. Zhao, Y. P.; Cai, Z. S.; Fu, X. L.; Song, B. Z.; Zhu, H. Y. Electrochemical deposition and characterization of copper crystals on polyaniline/poly(ethylene terephthalate) conductive textiles. Synthetic Met. 2013, 175, 1–8.

    Article  Google Scholar 

  12. Yamashita, T.; Khumpuang, S.; Miyake, K.; Itoh, T. Characterization of contact structure for woven electronic textile using conductive polymer micro-cantilever array. Electron. Commun. Jpn. 2014, 97, 48–53.

    Article  Google Scholar 

  13. Perumalraj, R.; Anilkumar, A.; Devi, A. S. N.; Saranya, B.; Deepa, P.; Karthika, R.; Maheshwari, N. Silver-filled electrically conductive epoxy and silver nitrate-plated textile composite materials for EMC. J. Reinf. Plast. Compos. 2011, 30, 203–215.

    Article  Google Scholar 

  14. Ramachandran, T.; Vigneswaran, C. Design and development of copper core conductive fabrics for smart textiles. J. Ind. Text. 2009, 39, 81–93.

    Article  Google Scholar 

  15. Kim, B. C.; Innis, P. C.; Wallace, G. G.; Low, C. T. J.; Walsh, F. C.; Cho, W. J.; Yu, K. H. Electrically conductive coatings of nickel and polypyrrole/poly(2-methoxyaniline-5-sulfonic acid) on nylon Lycra (R) textiles. Prog. Org. Coat. 2013, 76, 1296–1301.

    Article  Google Scholar 

  16. Lee, H. M.; Choi, S.-Y.; Jung, A.; Ko, S. H. Highly conductive aluminum textile and paper for flexible and wearable electronics. Angew. Chem. Int. Edit. 2013, 52, 7718–7723.

    Article  Google Scholar 

  17. Ko, Y. H.; Kim, M. S.; Park, W.; Yu, J. S. Well-integrated ZnO nanorod arrays on conductive textiles by electrochemical synthesis and their physical properties. Nanoscale Res. Lett. 2013, 8, 28.

    Article  Google Scholar 

  18. Nilsson, E.; Oxfall, H.; Wandelt, W.; Rychwalski, R.; Hagstrom, B. Melt spinning of conductive textile fibers with hybridized graphite nanoplatelets and carbon black filler. J. Appl. Polym. Sci. 2013, 130, 2579–2587.

    Article  Google Scholar 

  19. Khumpuang, S.; Miyake, K.; Itoh, T. Characterization of a SWNT-reinforced conductive polymer and patterning technique for applications of electronic textile. Sensor Actuat. A 2011, 169, 378–382.

    Article  Google Scholar 

  20. Xue, C.-H.; Chen, J.; Yin, W.; Jia, S.-T.; Ma, J.-Z. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl. Surf. Sci. 2012, 258, 2468–2472.

    Article  Google Scholar 

  21. Paul, G.; Torah, R.; Yang, K.; Beeby, S.; Tudor, J. An investigation into the durability of screen-printed conductive tracks on textiles. Meas. Sci. Technol. 2014, 25, 025006.

    Article  Google Scholar 

  22. Paul, G.; Torah, R.; Beeby, S.; Tudor, J. The development of screen printed conductive networks on textiles for biopotential monitoring applications. Sensor Actuat. A 2014, 206, 35–41.

    Article  Google Scholar 

  23. Wang, Y. D.; Lu, N.; Wang, W. T.; Liu, L. X.; Feng, L.; Zeng, Z. F.; Li, H. B.; Xu, W. Q.; Wu, Z. J.; Hu, W.; Lu, Y. Q.; Chi, L. F. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res. 2013, 6, 159–166.

    Article  Google Scholar 

  24. Preston, C.; Xu, Y. L.; Han, X. G.; Munday, J. N.; Hu, L. B. Optical haze of transparent and conductive silver nanowire films. Nano Res. 2013, 6, 461–468.

    Article  Google Scholar 

  25. Araki, T.; Jiu, J. T.; Nogi, M.; Koga, H.; Nagao, S.; Sugahara, T.; Suganuma, K. Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method. Nano Res. 2014, 7, 236–245.

    Article  Google Scholar 

  26. Tokuno, T.; Nogi, M.; Karakawa, M.; Jiu, J. T.; Nge, T. T.; Aso, Y.; Suganuma, K. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 2011, 4, 1215–1222.

    Article  Google Scholar 

  27. Jiu, J. T.; Nogi, M.; Sugahara, T.; Tokuno, T.; Araki, T.; Komoda, N.; Suganuma, K.; Uchida, H.; Shinozaki, K. Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique. J. Mater. Chem. 2012, 22, 23561–23567.

    Article  Google Scholar 

  28. Cui, H.-W.; Fan, Q.; Li, D.-S. Novel flexible electrically conductive adhesives from functional epoxy, flexibilizers, micro-silver flakes and nano-silver spheres for electronic package. Polym. Int. 2013, 62, 1644–1651.

    Google Scholar 

  29. Cui, H.-W.; Jiu, J.-T.; Nagao, S.; Sugahara, T.; Suganuma, K.; Uchida, H.; Schroder, K. A. Ultra-fast photonic curing electrically conductive adhesives fabricated from vinyl ester resin and silver flakes for printed electronics. RSC Adv. 2014, 4, 15914–15922.

    Article  Google Scholar 

  30. Hu, L. B.; Pasta, M.; La Mantia, F.; Cui, L. F.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Wang Cui.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, HW., Suganuma, K. & Uchida, H. Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method. Nano Res. 8, 1604–1614 (2015). https://doi.org/10.1007/s12274-014-0649-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0649-y

Keywords

Navigation