Skip to main content
Log in

Contracted interlayer distance in graphene/sapphire heterostructure

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Direct growth of graphene on insulators is expected to yield significant improvements in performance of graphene-based electronic and spintronic devices. In this study, we successfully reveal the atomic arrangement and electronic properties of a coherent heterostructure of single-layer graphene and α-Al2O3(0001). The analysis of the atomic arrangement of single-layer graphene on α-Al2O3(0001) revealed an apparentcontradiction. The in-plane analysis shows that single-layer graphene grows not in a single-crystalline epitaxial manner, but rather in polycrystalline form, with two strongly pronounced preferred orientations. This suggests relatively weak interfacial interactions are operative. However, we demonstrate that unusually strong physical interactions between graphene and α-Al2O3(0001) exist, as evidenced by the small separation between the graphene and the α-Al2O3(0001) surface. The interfacial interaction is shown to be dominated by the electrostatic forces involved in the graphene π-system and the unsaturated electrons of the topmost O layer of α-Al2O3(0001), rather than the van der Waals interactions. Such features causes graphene hole doping and enable the graphene to slide on the α-Al2O3(0001) surface with only a small energy barrier despite the strong interfacial interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

    Article  Google Scholar 

  3. Heersche, H. B.; Jarillo-Herrero, P.; Oostinga, J. B.; Vandersypen, L. M. K.; Morpurgo, A. F. Bipolar supercurrent in graphene. Nature 2007, 446, 56–59.

    Article  Google Scholar 

  4. Hwang, J.; Shields, V. B.; Thomas, C. I.; Shivaraman, S.; Hao, D.; Kim, M.; Woll, A. R.; Tompa, G. S.; Spencer, M. G. Epitaxial growth of graphitic carbon on C-face SiC and sapphire by chemical vapor deposition (CVD). J. Cryst. Growth 2010, 312, 3219–3224.

    Article  Google Scholar 

  5. Fanton, M. A.; Robinson, J. A.; Puls, C.; Liu, Y.; Hollander, M. J.; Weiland, B. E.; LaBella, M.; Trumbull, K.; Kasarda, R.; Howsare, C. et al. Characterization of graphene films and transistors growth on sapphire by metal-free chemical vapor deposition. ACS Nano 2011, 5, 8062–8069.

    Article  Google Scholar 

  6. Song, H. J.; Son, M.; Park, C.; Lim, H.; Levendorf, M. P.; Tsen, A. W.; Park, J.; Choi, H. C. Large scale metal-free synthesis of graphene on sapphire and transfer-free device fabrication. Nanoscale 2012, 4, 3050–3054.

    Article  Google Scholar 

  7. Nakamura, A.; Miyasaka, Y.; Temmyo, J. Direct growth properties of graphene layers on sapphire substrate by alcohol-chemical vapor deposition. Jpn. J. Appl. Phys. 2012, 51, 04DN03.

    Article  Google Scholar 

  8. Hwang, J.; Kim, M.; Campbell, D.; Alsalman, H. A.; Kwak, J. Y.; Shivaraman, S.; Woll, A. R.; Singh, A. K.; Hennig, R. G.; Gorantla, S. et al. Van der waalsepitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 2013, 7, 385–395.

    Article  Google Scholar 

  9. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Kohtkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. PNAS 2005, 102, 10451–10453.

    Article  Google Scholar 

  10. Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  11. Entani, S.; Matsumoto, Y.; Ohtomo, M.; Avramov, P. V.; Naramoto, H.; Sakai, S. Precise control of single- and bi-layer graphene growths on epitaxial Ni(111) thin film. J. Appl. Phys. 2012, 111, 064324.

    Article  Google Scholar 

  12. Chen, K.; Wang, X. M.; Xu, J. B. Electronic properties of graphene altered by substrate surface chemistry and externally applied electric field. J. Phys. Chem. C 2012, 116, 6259–6267.

    Article  Google Scholar 

  13. Du, A. J.; Ng, H. H.; Bell, N. J.; Zhu, Z. H.; Amal, R.; Smith, S. C. Hybrid graphene/titaniananocomposite: interface charge transfer, hole doping, and sensitization for visible light response. J. Phys. Chem. Lett. 2011, 2, 894–899.

    Article  Google Scholar 

  14. Woodruff, D. P.; Seymour, D. L.; McConvill, C. F.; Riley, C. E.; Crapper, M. D.; Prince, N. P.; Jones, R. G. Simple X-ray standing-wave technique and its application to the investigation of the Cu(111) (√3×√3)R30°-Cl structure. Phys. Rev. Lett. 1987, 58, 1460–1462.

    Article  Google Scholar 

  15. Baba, Y.; Narita, A.; Sekiguchi, T.; Shimoyama, I.; Hirao, N.; Entani, S.; Sakai, S. Structure determination of self-assembled monolayer on oxide surface by soft-X-ray standing wave. e-J. Surf. Sci. Nanotech. 2012, 10, 69–73.

    Article  Google Scholar 

  16. Hohenberg, P.; Koh, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

    Article  Google Scholar 

  17. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

    Article  Google Scholar 

  18. Ceperley, D. M.; Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–569.

    Article  Google Scholar 

  19. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  Google Scholar 

  20. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

    Article  Google Scholar 

  21. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  22. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

    Article  Google Scholar 

  23. Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  24. Lewis, J.; Schwarzenbach, D.; Flack, H. D. Electric field gradients and charge density in corundum, α-Al2O3. ActaCryst. 1982, A38, 733–739.

    Google Scholar 

  25. Perevalov, T. V.; Shaposhnikov, A. V.; Gritsenko, V. A.; Wong, H.; Han, J. H.; Kim, C. W. Electronic structure of α-Al2O3: ab initio simulations and comparison with experiment. JETP Lett. 2007, 85, 165–168.

    Article  Google Scholar 

  26. Arakawa, E. T.; Williams, M. W. Optical properties of aluminum oxide in the vacuum ultraviolet. J. Phys. Chem. Solids. 1968, 29, 735–744.

    Article  Google Scholar 

  27. Balzarotti, A.; Bianconi, A. Electronic structure of aluminium oxide as determined by X-ray photoemission. Phys. Status. Solidi B 1976, 76, 689–694.

    Article  Google Scholar 

  28. French, R. H. Electronic band structure of Al2O3, with comparison to AlON and AlN. J. Am. Ceram. Soc. 1990, 73, 477–489.

    Article  Google Scholar 

  29. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, K.; Marui, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  Google Scholar 

  30. Yan, J.; Zhang, Y. B.; Kim, P.; Pinczuk, A. Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 2007, 98, 166802

    Article  Google Scholar 

  31. Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 2007, 6, 198–201.

    Article  Google Scholar 

  32. Lespade, P.; Marchand, A.; Couzi, M; Cruege, F. Caracterisation de materiauxcarbones par microspectrometrieraman. Carbon 1984, 22, 375–385.

    Article  Google Scholar 

  33. Ferrari, A. C.; Robertson, J. Interpretation of ramanspectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095.

    Article  Google Scholar 

  34. Casiraghi, C.; Pisana, S.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 2007, 91, 233108.

    Article  Google Scholar 

  35. Entani, S.; Sakai, S.; Matsumoto, Y.; Naramoto, H.; Hao, T.; Maeda, Y. Interface properties of metal/graphene heterostructures studied by micro-ramanspectroscopy. J. Phys. Chem. C 2010, 114, 20042–20048.

    Article  Google Scholar 

  36. Gass, M. H.; Bangert, U.; Bleloch, A. L.; Wang, P.; Nair, R. R.; Geim, A. K. Free-standing graphene at atomic resolution. Nat. Nanotechnol. 2008, 3, 676–681.

    Article  Google Scholar 

  37. Chae, S. J.; Günes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H.; Yoon, S.; Choi, Y.; Park, M. H. et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 2009, 21, 2328–2333.

    Article  Google Scholar 

  38. Trucano, P.; Chen, R. Structure of graphite by neutron diffraction. Nature 1975, 258, 136–137.

    Article  Google Scholar 

  39. Busse, C.; Lazić, P.; Djemour, R.; Coraux, J.; Gerber, T.; Atodirescei, N.; Caciuc, V.; Brako, R.; N’Diaye, A. T.; Blügel, S. et al. Graphene on Ir(111): Physisorptionwith chemical modulation. Phys. Rev. Lett. 2011, 107, 036101.

    Article  Google Scholar 

  40. Gamo, Y.; Nagashima, A.; Wakabayashi, M.; Terai, M.; Oshima, C. Atomic structure of monolayer graphite formed on Ni(111). Surf. Sci. 1997, 374, 61–64.

    Article  Google Scholar 

  41. Wagner, C. D. X-ray photoelectron spectroscopy with x-ray photons of higher energy. J. Vac. Sci. Technol. 1978, 15, 518–523.

    Article  Google Scholar 

  42. Hamrin, K.; Johansson, G.; Gelius, U.; Nordling, C.; Siegbahn, K. Valence bands and core levels of the isoelectronic series LiF, BeO, BN, and graphite studied by ESCA. Phys. Scripta. 1970, 1, 277–280.

    Article  Google Scholar 

  43. Nagashima, A.; Tejima, N.; Oshima, C. Electronic states of the pristine and alkali-metal-intercalated monolayer graphite/Ni(111) systems. Phys. Rev. B 1994, 50, 17487–17495.

    Article  Google Scholar 

  44. Entani, S.; Ikeda, S.; Kiguchi, M.; Saiki, K.; Yoshikawa, G.; Nakai, I.; Kondoh, H.; Ohta, T. Growth of nanographite on Pt(111) and its edge state. Appl. Phys. Lett. 2006, 88, 153126.

    Article  Google Scholar 

  45. Preobrajenski, A. B.; Ng, N. L.; Vinogradov, A. S.; Mårtensson, N. Controlling graphene corrugation on lattice-mismatched substrates. Phys. Rev. B 2008, 78, 073401.

    Article  Google Scholar 

  46. Eberlein, T.; Bangert, U. B.; Nair, R. R.; Jones, R.; Gass, M.; Bleloch, A. L.; Novoselov, K. S.; Geim, A.; Briddon, P. R. Plasmon spectroscopy of free-standing graphene films. Phys. Rev. B 2008, 77, 233406.

    Article  Google Scholar 

  47. Stradi, D.; Barja, S.; Díaz, C.; Barnica, M.; Borca, B.; Hinarejos, J. J.; Sánchez-Portal, D.; Alcamí, M.; Arnau, A.; Vázquez de Parga, A. L.; Miranda, R.; Martín, F. Lattice-matched versus lattice-mismatched models to describe epitaxial monolayer graphene on Ru(0001). Phys. Rev. B 2013, 88, 245401.

    Article  Google Scholar 

  48. Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; van den Brink, J.; Kelly, P. J. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101, 026803.

    Article  Google Scholar 

  49. Vanin, M.; Mortensen, J. J.; Kelkkanen, A. K.; Garcia-Lastra, J. M.; Thygesen, K. S.; Jacobsen, K. W. Graphene on metals: A van der Waals density functional study. Phys. Rev. B 2010, 81, 081408.

    Article  Google Scholar 

  50. Kozlov, S. M.; Viñes, F.; Görling, A. Bonding mechanisms of graphene on metal surfaces. J. Phys. Chem. C 2012, 116, 736.

    Article  Google Scholar 

  51. Gong, C.; Lee, G.; Shan, B.; Vogel, E. M.; Wallace, R. M.; Cho, K. First-principles study of metal-graphene interface. J. Appl. Phys. 2010, 108, 123711.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiro Entani or Pavel B. Sorokin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Entani, S., Antipina, L.Y., Avramov, P.V. et al. Contracted interlayer distance in graphene/sapphire heterostructure. Nano Res. 8, 1535–1545 (2015). https://doi.org/10.1007/s12274-014-0640-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0640-7

Keywords

Navigation