Skip to main content
Log in

Solution-derived poly(ethylene glycol)-TiO x nanocomposite film as a universal cathode buffer layer for enhancing efficiency and stability of polymer solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Highly efficient and stable polymer solar cells (PSCs) have been fabricated by adopting solution-derived hybrid poly(ethylene glycol)-titanium oxide (PEG-TiO x ) nanocomposite films as a novel and universal cathode buffer layer (CBL), which can greatly improve device performance by reducing interface energy barriers and enhancing charge extraction/collection. The performance of inverted PSCs with varied bulk-heterojunctions (BHJs) based on this hybrid nanocomposite CBL was found to be much better than those of control devices with a pure TiO x CBL or without a CBL. An excellent power conversion efficiency up to 9.05% under AM 1.5G irradiation (100 mW·cm−2) was demonstrated, which represents a record high value for inverted PSCs with TiO x -based interface materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324–1338.

    Article  Google Scholar 

  2. Servaites, J. D.; Ratner, M. A.; Marks, T. J. Organic solar cells: A new look at traditional models. Energy Environ. Sci. 2011, 4, 4410–4422.

    Article  Google Scholar 

  3. Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics 2012, 6, 153–161.

    Article  Google Scholar 

  4. Li, K.; Li, Z.; Feng, K.; Xu, X.; Wang, L.; Peng, Q. Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells. J. Am. Chem. Soc. 2013, 135, 13549–13557.

    Article  Google Scholar 

  5. Jørgensen, M.; Norrman, K.; Gevorgyan, S. A.; Tromholt, T.; Andreasen, B.; Krebs, F. C. Stability of polymer solar cells. Adv. Mater. 2012, 24, 580–612.

    Article  Google Scholar 

  6. Liao, S.-H.; Jhuo, H.-J.; Cheng, Y.-S.; Chen, S.-A. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv. Mater. 2013, 25, 4766–4771.

    Article  Google Scholar 

  7. Ma, H.; Yip, H. L.; Huang, F.; Jen, A. K. Y. Interface engineering for organic electronics. Adv. Funct. Mater. 2010, 20, 1371–1388.

    Article  Google Scholar 

  8. He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 2012, 6, 591–595.

    Google Scholar 

  9. You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G.; Yang, Y. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 2013, 4, 1446.

    Article  Google Scholar 

  10. Liang, Y.; Xu, Z.; Xia, J.; Tsai, S. -T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 2010, 22, E135–E138.

    Article  Google Scholar 

  11. Yin, Z.; Zhu, J.; He, Q.; Cao, X.; Tan, C.; Chen, H.; Yan, Q.; Zhang, H. Graphene-based materials for solar cell applications. Adv. Energy Mater. 2014, 4, 1300574.

    Google Scholar 

  12. Zhang, M.; Gu, Y.; Guo, X.; Liu, F.; Zhang, S.; Huo, L.; Russell, T. P.; Hou, J. Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8%. Adv. Mater. 2013, 25, 4944–4949.

    Article  Google Scholar 

  13. Xiao, Z.; Ye, G.; Liu, Y.; Chen, S.; Peng, Q.; Zuo, Q.; Ding, L. Pushing fullerene absorption into the near-IR region by conjugately fusing oligothiophenes. Angew. Chem. Int. Ed. 2012, 51, 9038–9041.

    Article  Google Scholar 

  14. Li, Y. Molecular design of photovoltaic materials for polymer solar cells: Toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 2012, 45, 723–733.

    Article  Google Scholar 

  15. Wong, W.-Y.; Wang, X.-Z.; He, Z.; Djurišić, A. B.; Yip, C.-T.; Cheung, K.-Y.; Wang, H.; Mak, C. S. K.; Chan, W. -K. Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. Nat. Mater. 2007, 6, 521–527.

    Article  Google Scholar 

  16. Campoy-Quiles, M.; Ferenczi, T.; Agostinelli, T.; Etchegoin, P. G.; Kim, Y.; Anthopoulos, T. D.; Stavrinou, P. N.; Bradley, D. D. C.; Nelson, J. Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends. Nat. Mater. 2008, 7, 158–164.

    Article  Google Scholar 

  17. Yin, Z.; Zheng, Q. Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: An overview. Adv. Energy Mater. 2012, 2, 179–218.

    Article  Google Scholar 

  18. Lee, B. R.; Jung, E. D.; Nam, Y. S.; Jung, M.; Park, J. S.; Lee, S.; Choi, H.; Ko, S.-J.; Shin, N. R.; Kim, Y.-K.; Kim, S. O.; Kim, J. Y.; Shin, H.-J.; Cho, S.; Song, M. H. Aminebased polar solvent treatment for highly efficient inverted polymer solar cells. Adv. Mater. 2014, 26, 494–500.

    Article  Google Scholar 

  19. Chen, S.; Manders, J. R.; Tsang, S. W.; So, F. Metal oxides for interface engineering in polymer solar cells. J. Mater. Chem. 2012, 22, 24202–24212.

    Article  Google Scholar 

  20. Song, M.; Park, J. H.; Kim, C. S.; Kim, D. -H.; Kang, Y.-C.; Jin, S.-H.; Jin, W.-Y.; Kang, J.-W. Highly flexible and transparent conducting silver nanowires/ZnO composite film for organic solar cells. Nano Res. 2014, 7, 1370–1379.

    Article  Google Scholar 

  21. Li, W.; Furlan, A.; Hendriks, K. H.; Wienk, M. M.; Janssen, R. A. J. Efficient tandem and triple-junction polymer solar cells. J. Am. Chem. Soc. 2013, 135, 5529–5532.

    Article  Google Scholar 

  22. Zhang, F.; Xu, X.; Tang, W.; Zhang, J.; Zhuo, Z.; Wang, J.; Xu, Z.; Wang, Y. Recent development of the inverted configuration organic solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 1785–1799.

    Article  Google Scholar 

  23. Williams, G.; Wang, Q.; Aziz, H. The photo-stability of polymer solar cells: Contact photo-degradation and the benefits of interfacial layers. Adv. Funct. Mater. 2013, 23, 2239–2247.

    Article  Google Scholar 

  24. Xu, Z.; Chen, L.; Yang, G.; Huang, C. H.; Hou, J.; Wu, Y.; Li, G.; Hsu, C. S.; Yang, Y. Vertical phase separation in poly(3-hexylthiophene): Fullerene derivative blends and its advantage for inverted structure solar cells. Adv. Funct. Mater. 2009, 19, 1227–1234.

    Article  Google Scholar 

  25. Motiei, L.; Yao, Y.; Choudhury, J.; Yan, H.; Marks, T. J.; van der Boom, M. E.; Facchetti, A. Self-propagating molecular assemblies as interlayers for efficient inverted bulk-heterojunction solar cells. J. Am. Chem. Soc. 2010, 132, 12528–12530.

    Article  Google Scholar 

  26. Yin, Z.; Zheng, Q.; Chen, S.; Cai, D. Interface control of semiconducting metal oxide layers for efficient and stable inverted polymer solar cells with open-circuit voltages over 1.0 Volt. ACS Appl. Mater. Interfaces 2013, 5, 9015–9025.

    Article  Google Scholar 

  27. Yin, Z.; Zheng, Q.; Chen, S.; Cai, D.; Zhou, L.; Zhang, J. Bandgap tunable Zn1−x MgxO thin films as highly transparent cathode buffer layers for high-performance inverted polymer solar cells. Adv. Energy Mater. 2014, 4, 1301404.

    Google Scholar 

  28. Wang, D. H.; Kim, J. K.; Seo, J. H.; Park, I.; Hong, B. H.; Park, J. H.; Heeger, A. J. Transferable graphene oxide by stamping nanotechnology: Electron-transport layer for efficient bulk-heterojunction solar cells. Angew. Chem. Int. Ed. 2013, 52, 2874–2880.

    Article  Google Scholar 

  29. You, J.; Chen, C. C.; Dou, L.; Murase, S.; Duan, H. S.; Hawks, S. A.; Xu, T.; Son, H. J.; Yu, L.; Li, G.; Yang, Y. Metal oxide nanoparticles as an electron-transport layer in high-performance and stable inverted polymer solar cells. Adv. Mater. 2012, 24, 5267–5272.

    Article  Google Scholar 

  30. Sun, Y.; Seo, J. H.; Takacs, C. J.; Seifter, J.; Heeger, A. J. Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv. Mater. 2011, 23, 1679–1683.

    Article  Google Scholar 

  31. Huang, J.; Yin, Z.; Zheng, Q. Applications of ZnO in organic and hybrid solar cells. Energy Environ. Sci. 2011, 4, 3861–3877.

    Article  Google Scholar 

  32. Waldauf, C.; Morana, M.; Denk, P.; Schilinsky, P.; Coakley, K.; Choulis, S. A.; Brabec, C. J. Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact. Appl. Phys. Lett. 2006, 89, 233517.

    Article  Google Scholar 

  33. Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317, 222–225.

    Article  Google Scholar 

  34. Zhang, D.; Choy, W. C. H.; Xie, F.; Sha, W. E. I.; Li, X.; Ding, B.; Zhang, K.; Huang, F.; Cao, Y. Plasmonic electrically functionalized TiO2 for high-performance organic solar cells. Adv. Funct. Mater. 2013, 23, 4255–4261.

    Article  Google Scholar 

  35. Huang, J.; Li, G.; Yang, Y. A semi-transparent plastic solar cell fabricated by a lamination process. Adv. Mater. 2008, 20, 415–419.

    Article  Google Scholar 

  36. Jiang, C.; Sun, X.; Zhao, D.; Kyaw, A. K. K.; Li, Y. Low work function metal modified ITO as cathode for inverted polymer solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 1618–1621.

    Article  Google Scholar 

  37. Liu, J.; Shao, S.; Fang, G.; Meng, B.; Xie, Z.; Wang, L. High-efficiency inverted polymer solar cells with transparent and work-function tunable MoO3-Al composite film as cathode buffer layer. Adv. Mater. 2012, 24, 2774–2779.

    Article  Google Scholar 

  38. Small, C. E.; Chen, S.; Subbiah, J.; Amb, C. M.; Tsang, S. W.; Lai, T. H.; Reynolds, J. R.; So, F. High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells. Nat. Photonics 2012, 6, 115–120.

    Article  Google Scholar 

  39. Sun, C.; Wu, Y.; Zhang, W.; Jiang, N.; Jiu, T.; Fang, J. Improving efficiency by hybrid TiO2 nanorods with 1,10-phenanthroline as a cathode buffer layer for inverted organic solar cells. ACS Appl. Mater. Interfaces 2014, 6, 739–744.

    Article  Google Scholar 

  40. Kang, H.; Hong, S.; Lee, J.; Lee, K. Electrostatically self-assembled nonconjugated polyelectrolytes as an ideal interfacial layer for inverted polymer solar cells. Adv. Mater. 2012, 24, 3005–3009.

    Article  Google Scholar 

  41. Choi, H.; Park, J. S.; Jeong, E.; Kim, G. H.; Lee, B. R.; Kim, S. O.; Song, M. H.; Woo, H. Y.; Kim, J. Y. Combination of titanium oxide and a conjugated polyelectrolyte for high-performance inverted-type organic optoelectronic devices. Adv. Mater. 2011, 23, 2759–2763.

    Article  Google Scholar 

  42. Jo, S. B.; Lee, J. H.; Sim, M.; Kim, M.; Park, J. H.; Choi, Y. S.; Kim, Y.; Ihn, S. G.; Cho, K. High performance organic photovoltaic cells using polymer-hybridized ZnO nanocrystals as a cathode interlayer. Adv. Energy Mater. 2011, 1, 690–698.

    Article  Google Scholar 

  43. Sun, B.; Sirringhaus, H. Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett. 2005, 5, 2408–2413.

    Article  Google Scholar 

  44. Lee, H. S.; Kim, D. H.; Cho, J. H.; Hwang, M.; Jang, Y.; Cho, K. Effect of the phase states of self-assembled monolayers on pentacene growth and thin-film transistor characteristics. J. Am. Chem. Soc. 2008, 130, 10556–10564.

    Article  Google Scholar 

  45. Hu, T.; Li, F.; Yuan, K.; Chen, Y. Efficiency and air-stability improvement of flexible inverted polymer solar cells using ZnO/poly(ethylene glycol) hybrids as cathode buffer layers. ACS Appl. Mater. Interfaces 2013, 5, 5763–5770.

    Article  Google Scholar 

  46. Wong, K. H.; Mason, C. W.; Devaraj, S.; Ouyang, J.; Balaya, P. Low temperature aqueous electrodeposited TiOx thin films as electron extraction layer for efficient inverted organic solar cells. ACS Appl. Mater. Interfaces 2014, 6, 2679–2685.

    Article  Google Scholar 

  47. Yu, J.; Zhao, X.; Zhao, Q. Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method. Thin Solid Films 2000, 379, 7–14.

    Article  Google Scholar 

  48. Kumar, P. M.; Badrinarayanan, S.; Sastry, M. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: Correlation to presence of surface states. Thin Solid Films 2000, 358, 122–130.

    Article  Google Scholar 

  49. Tan, Z.; Zhang, W.; Zhang, Z.; Qian, D.; Huang, Y.; Hou, J.; Li, Y. High-performance inverted polymer solar cells with solution-processed titanium chelate as electron-collecting layer on ITO electrode. Adv. Mater. 2012, 24, 1476–1481.

    Article  Google Scholar 

  50. Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 2009, 3, 297–302.

    Article  Google Scholar 

  51. Shao, S.; Zheng, K.; Pullerits, T.; Zhang, F. Enhanced performance of inverted polymer solar cells by using poly(ethylene oxide)-modified ZnO as an electron transport layer. ACS Appl. Mater. Interfaces 2013, 5, 380–385.

    Article  Google Scholar 

  52. Shi, J.; Liu, Y.; Peng, Q.; Li, Y. ZnO hierarchical aggregates: solvothermal synthesis and application in dye-sensitized solar cells. Nano Res. 2013, 6, 441–448.

    Article  Google Scholar 

  53. Thapa, A.; Zai, J.; Elbohy, H.; Poudel, P.; Adhikari, N.; Qian, X.; Qiao, Q. TiO2 coated urchin-like SnO2 microspheres for efficient dye-sensitized solar cells. Nano Res. 2014, 7, 1154–1163.

    Article  Google Scholar 

  54. Li, H.; Wang, J.; Liu, M.; Wang, H.; Su, P.; Wu, J.; Li, J. A nanoporous oxide interlayer makes a better Pt catalyst on a metallic substrate: Nanoflowers on a nanotube bed. Nano Res. 2014, 7, 1007–1017.

    Article  Google Scholar 

  55. Guan, B.; Wang, T.; Zeng, S.; Wang, X.; An, D.; Wang, D.; Cao, Y.; Ma, D.; Liu, Y.; Huo, Q. A versatile cooperative template-directed coating method to synthesize hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors. Nano Res. 2014, 7, 246–262.

    Article  Google Scholar 

  56. Song, H.; Jo, K.; Jung, B.Y.; Jung, G.Y. Fabrication of periodically aligned vertical single-crystalline anatase TiO2 nanotubes with perfect hexagonal open-ends using chemical capping materials. Nano Res. 2014, 7, 104–109.

    Article  Google Scholar 

  57. Park, S.; Kim, D.; Lee, C.W.; Seo, S.-D.; Kim, H.J.; Han, H.S.; Hong, K.S.; Kim, D.-W. Surface-area-tuned, quantum-dot-sensitized heterostructured nanoarchitectures for highly efficient photoelectrodes. Nano Res. 2014, 7, 144–153.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingdong Zheng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Z., Zheng, Q., Chen, SC. et al. Solution-derived poly(ethylene glycol)-TiO x nanocomposite film as a universal cathode buffer layer for enhancing efficiency and stability of polymer solar cells. Nano Res. 8, 456–468 (2015). https://doi.org/10.1007/s12274-014-0615-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0615-8

Keywords

Navigation