Skip to main content
Log in

Ag3PO4 colloidal nanocrystal clusters with controllable shape and superior photocatalytic activity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cluster-like Ag3PO4 nanostructures including nanoparticles, trisoctahedrons, tetrahedrons and tetrapods have been prepared by the synergetic reaction of Ag nanocrystals, phosphate anions and hydrogen peroxide. The acidity and alkalinity of the reaction solution are tuned to adjust the oxidizing ability of H2O2, and thus control the final morphology. Ag nanocrystals function as a sacrificial precursor, leading to the generation of cluster-like nanostructures. Through a kinetic study, the formation of Ag3PO4 nanocrystal clusters can be understood as the conversion from Ag to Ag3PO4 nanocrystals assisted by H2O2, followed by the oriented attachment of nanocrystals into cluster-like colloids with specific shapes. The as-prepared Ag3PO4 nanostructures have higher photocatalytic activity than commercial TiO2 and some reported Ag3PO4 microcrystals in the degradation of dyes. The catalytic activity decreases in the order nanoparticles > trisoctahedrons > tetrahedrons > tetrapods, while the stability increases in the order nanoparticles < tetrahedrons < trisoctahedrons < tetrapods, which can be explained by the extent of absorption of visible light and structural factors, including size and exposed crystal facets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, Q.; Ji, M. W.; Qian, H. M.; Dai, B. S.; Weng, L.; Gui, J.; Zhang, J. T.; Ouyang, M.; Zhu, H. S. Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution. Adv. Mater. 2014, 26, 1387–1392.

    Article  Google Scholar 

  2. Wu, M. C.; Sápi, A.; Avila, A.; Szabó, M.; Hiltunen, J.; Huuhtanen, M.; Tóth, G.; Kukovecz, Á.; Kónya, Z.; Keiski, R.; et al. Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: Decomposition of organic dyes and efficient H2 generation from ethanol-water mixtures. Nano Res. 2011, 4, 360–369.

    Article  Google Scholar 

  3. Yu, H. J.; Zhao, Y. F.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y. H.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2014, 2, 3344–3351.

    Article  Google Scholar 

  4. Zhou, C.; Shang, L.; Yu, H.; Bian, T.; Wu, L. Z.; Tung, C. H.; Zhang, T. Mesoporous plasmonic Au-loaded Ta2O5 nanocomposites for efficient visible light photocatalysis. Catal. Today 2014, 225, 158–163.

    Article  Google Scholar 

  5. Zhou, C.; Zhao, Y. F.; Bian, T.; Shang, L.; Yu, H. J.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production. Chem. Commun. 2013, 49, 9872–9874.

    Article  Google Scholar 

  6. Yi, Z. G.; Ye, J. H.; Kikugawa, N.; Kako, T.; Ouyang, S. X.; Stuart-Williams, H.; Yang, H.; Cao, J. Y.; Luo, W. J.; Li, Z. S.; et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 2010, 9, 559–564.

    Article  Google Scholar 

  7. Pasternak, S.; Paz, Y. On the similarity and dissimilarity between photocatalytic water splitting and photocatalytic degradation of pollutants. ChemPhysChem 2013, 14, 2059–2070.

    Article  Google Scholar 

  8. Wu, T.; Zhou, X. G.; Zhang, H.; Zhong, X. H. Bi2S3 nanostructures: A new photocatalyst. Nano Res. 2010, 3, 379–386.

    Article  Google Scholar 

  9. Navalón, S.; Dhakshinamoorthy, A.; Álvaro, M.; Garcia, H. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. ChemSusChem 2013, 6, 562–577.

    Article  Google Scholar 

  10. Lasek, J.; Yu, Y. H.; Wu, J. C. S. Removal of NOx by photocatalytic processes. J. Photochem. Photobiol. C 2013, 14, 29–52.

    Article  Google Scholar 

  11. Jing, L. Q.; Zhou, W.; Tian, G. H.; Fu, H. G. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem. Soc. Rev. 2013, 42, 9509–9549.

    Article  Google Scholar 

  12. Xuan, J.; Xiao, W. J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed. 2012, 51, 6828–6838.

    Article  Google Scholar 

  13. Kisch, H. Semiconductor photocatalysis—Mechanistic and synthetic aspects. Angew. Chem. Int. Ed. 2013, 52, 812–847.

    Article  Google Scholar 

  14. Shiraishi, Y.; Kanazawa, S.; Tsukamoto, D.; Shiro, A.; Sugano, Y.; Hirai, T. Selective hydrogen peroxide formation by titanium dioxide photocatalysis with benzylic alcohols and molecular oxygen in water. ACS. Catal. 2013, 3, 2222–2227.

    Article  Google Scholar 

  15. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  Google Scholar 

  16. Qu, Y. Q.; Duan, X. F. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568–2580.

    Article  Google Scholar 

  17. Park, H.; Park, Y.; Kim, W.; Choi, W. Surface modification of TiO2 photocatalyst for environmental applications. J. Photochem. Photobiol. C 2013, 15, 1–20.

    Article  Google Scholar 

  18. Huang, G. F.; Ma, Z. L.; Huang, W. Q.; Tian, Y.; Jiao, C.; Yang, Z. M.; Wan, Z.; Pan, A. L. Ag3PO4 semiconductor photocatalyst: Possibilities and challenges. J. Nanomater. 2013, 2013, 1–8.

    Google Scholar 

  19. Nebel, C. E. Photocatalysis: A source of energetic electrons. Nat. Mater. 2013, 12, 780–781.

    Article  Google Scholar 

  20. Umezawa, N.; Shuxin, O.; Ye, J. Theoretical study of high photocatalytic performance of Ag3PO4. Phys. Rev. B 2011, 83, 035202.

    Article  Google Scholar 

  21. Bi, Y. P.; Hu, H. Y.; Ouyang, S. X.; Lu, G. X.; Cao, J. Y.; Ye, J. H. Photocatalytic and photoelectric properties of cubic Ag3PO4 sub-microcrystals with sharp corners and edges. Chem. Commun. 2012, 48, 3748–3750.

    Article  Google Scholar 

  22. Dong, P. Y.; Wang, Y. H.; Li, H. H.; Li, H.; Ma, X. L.; Han, L. L. Shape-controllable synthesis and morphology-dependent photocatalytic properties of Ag3PO4 crystals. J. Mater. Chem. A 2013, 1, 4651–4656.

    Article  Google Scholar 

  23. Bi, Y. P.; Ouyang, S. X.; Cao, J. Y.; Ye, J. H. Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities. Phys. Chem. Chem. Phys. 2011, 13, 10071–10075.

    Article  Google Scholar 

  24. Hu, P. F.; Cao, Y. L.; Jia, D. Z.; Li, Q.; Liu, R. L. Engineering the metathesis and oxidation-reduction reaction in solid state at room temperature for nanosynthesis. Sci. Rep. 2014, 4, 04153.

    Google Scholar 

  25. Liu, J. K.; Luo, C. X.; Wang, J. D.; Yang, X. H.; Zhong, X. H. Controlled synthesis of silver phosphate crystals with high photocatalytic activity and bacteriostatic activity. CrystEngComm 2012, 14, 8714–8721.

    Article  Google Scholar 

  26. Jiao, Z. B.; Zhang, Y.; Yu, H. C.; Lu, G. X.; Ye, J. H.; Bi, Y. P. Concave trisoctahedral Ag3PO4 microcrystals with high-index facets and enhanced photocatalytic properties. Chem. Commun. 2013, 49, 636–638.

    Article  Google Scholar 

  27. Martin, D. J.; Umezawa, N.; Chen, X. M.; Ye, J. H.; Tang, J. W. Facet engineered Ag3PO4 for efficient water photooxidation. Energ. Environ. Sci. 2013, 6, 3380–3386.

    Article  Google Scholar 

  28. Bi, Y.; Ouyang, S.; Umezawa, N.; Cao, J. Y.; Ye, J. H. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 6490–6492.

    Article  Google Scholar 

  29. Hu, H. Y.; Jiao, Z. B.; Yu, H. C.; Lu, G. X.; Ye, J. H.; Bi, Y. P. Facile synthesis of tetrahedral Ag3PO4 submicro-crystals with enhanced photocatalytic properties. J. Mater. Chem. A 2013, 1, 2387–2390.

    Article  Google Scholar 

  30. Bi, Y. P.; Hu, H. Y.; Jiao, Z. B.; Yu, H. C.; Lu, G. X.; Ye, J. H. Two-dimensional dendritic Ag3PO4 nanostructures and their photocatalytic properties. Phys. Chem. Chem. Phys. 2012, 14, 14486–14488.

    Article  Google Scholar 

  31. Wang, H.; He, L.; Wang, L. H.; Hu, P. F.; Guo, L.; Han, X. D.; Li, J. H. Facile synthesis of Ag3PO4 tetrapod microcrystals with an increased percentage of exposed {110} facets and highly efficient photocatalytic properties. CrystEngComm 2012, 14, 8342–8344.

    Article  Google Scholar 

  32. Wang, J.; Teng, F.; Chen, M. D.; Xu, J. J.; Song, Y. Q.; Zhou, X. L. Facile synthesis of novel Ag3PO4 tetrapods and the {110} facets-dominated photocatalytic activity. CrystEngComm 2013, 15, 39–42.

    Article  Google Scholar 

  33. Lou, Z. Z.; Huang, B. B.; Wang, Z. Y.; Zhang, R.; Yang, Y. M.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Fast-generation of Ag3PO4 concave microcrystals from electrochemical oxidation of bulk silver sheet. CrystEngComm 2013, 15, 5070–5075.

    Article  Google Scholar 

  34. Liang, Q. H.; Ma, W. J.; Shi, Y.; Li, Z.; Yang, X. M. Hierarchical Ag3PO4 porous microcubes with enhanced photocatalytic properties synthesized with the assistance of trisodium citrate. CrystEngComm 2012, 14, 2966–2973.

    Article  Google Scholar 

  35. Dinh, C. T.; Nguyen, T. D.; Kleitz, F.; Do, T. O. Large-scale synthesis of uniform silver orthophosphate colloidal nanocrystals exhibiting high visible light photocatalytic activity. Chem. Commun. 2011, 47, 7797–7799.

    Article  Google Scholar 

  36. Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251.

    Article  Google Scholar 

  37. Hu, Y. X.; Ge, J. P.; Lim, D.; Zhang, T. R.; Yin, Y. D. Size-controlled synthesis of highly water-soluble silver nanocrystals. J. Solid State Chem. 2008, 181, 1524–1529.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Ge.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, F., Liu, X., He, M. et al. Ag3PO4 colloidal nanocrystal clusters with controllable shape and superior photocatalytic activity. Nano Res. 8, 106–116 (2015). https://doi.org/10.1007/s12274-014-0580-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0580-2

Keywords

Navigation