Skip to main content
Log in

Scanning gate imaging of quantum point contacts and the origin of the 0.7 anomaly

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The origin of the anomalous transport feature appearing at a conductance G ≈ 0.7 × (2e2/h) in quasi-1D ballistic devices-the so-called 0.7 anomaly-represents a long standing puzzle. Several mechanisms have been proposed to explain it, but a general consensus has not been achieved. Proposed explanations have been based on quantum interference, the Kondo effect, Wigner crystallization, and other phenomena. A key open issue is whether the point defects that can occur in these low-dimensional devices are the physical cause behind this conductance anomaly. Here we adopt a scanning gate microscopy technique to map individual impurity positions in several quasi-1D constrictions and correlate these with conductance characteristics. Our data demonstrate that the 0.7 anomaly can be observed irrespective of the presence of localized defects, and we conclude that the 0.7 anomaly is a fundamental property of low-dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomas, K. J.; Nicholls, J. T.; Simmons, M. Y.; Pepper, M.; Mace, D. R.; Ritchie, D. A. Possible spin polarization in a one-dimensional electron gas. Phys. Rev. Lett. 1996, 77, 135–138.

    Article  Google Scholar 

  2. Patel, N. K.; Nicholls, J. T.; Martìn-Moreno, L.; Pepper, M.; Frost, J. E. F.; Ritchie, D. A.; Jones, G. A. C. Evolution of half plateaus as a function of electric field in a ballistic quasi-one-dimensional constriction. Phys. Rev. B 1991, 44, 13549–13555.

    Article  Google Scholar 

  3. Micolich, A. P. What lurks below the last plateau: Experimental studies of the 0.7 × 2e2/h conductance anomaly in one-dimensional systems. J. Phys. Condens. Matter 2011, 23, 443201.

    Article  Google Scholar 

  4. Liang, C. T.; Pepper, M.; Simmons, M. Y.; Smith, C. G.; Ritchie, D. A. Spin-dependent transport in a quasiballistic quantum wire. Phys. Rev. B 2000, 61, 9952–9955.

    Article  Google Scholar 

  5. Liang, C. T.; Simmons, M. Y.; Smith, C. G.; Ritchie, D. A.; Pepper, M. Fabrication and transport properties of clean long one-dimensional quantum wires formed in modulation-doped GaAs/AlGaAs heterostructures. Appl. Phys. Lett. 1999, 75, 2975–2977.

    Article  Google Scholar 

  6. Rokhinson, L. P.; Pfeiffer, L. N.; West, K. W. Spontaneous spin polarization in quantum point contacts. Phys. Rev. Lett. 2006, 96, 156602.

    Article  Google Scholar 

  7. Aryanpour, K.; Han, J. E. Ferromagnetic spin coupling as the origin of 0.7 anomaly in quantum point contacts. Phys. Rev. Lett. 2009, 102, 056805.

    Article  Google Scholar 

  8. Matveev, K. A. Conductance of a quantum wire in the Wigner-crystal regime. Phys. Rev. Lett. 2004, 92, 106801.

    Article  Google Scholar 

  9. Cronenwett, S. M.; Lynch, H. J.; Goldhaber-Gordon, D.; Kouwenhoven, L. P.; Marcus, C. M.; Hirose, K.; Wingreen, N. S.; Umansky, V. Low-temperature fate of the 0.7 structure in a point contact: A Kondo-like correlated state in an open system. Phys. Rev. Lett. 2002, 88, 226805.

    Article  Google Scholar 

  10. Meir, Y.; Hirose, K.; Wingreen, N. S. Kondo model for the “0.7 anomaly” in transport through a quantum point contact. Phys. Rev. Lett. 2002, 89, 196802.

    Article  Google Scholar 

  11. Sfigakis, F.; Ford, C. J. B.; Pepper, M.; Kataoka, M.; Ritchie, D. A.; Simmons, M. Y. Kondo effect from a tunable bound state within a quantum wire. Phys. Rev. Lett. 2008, 100, 026807.

    Article  Google Scholar 

  12. Iqbal, M. J.; Levy, R.; Koop, E. J.; Dekker, J. B.; de Jong, J. P.; van der Velde, J. H. M.; Reuter, D.; Wieck, A. D.; Aguado, R.; Meir, Y. et al. Odd and even Kondo effects from emergent localization in quantum point contacts. Nature 2013, 501, 79–83.

    Article  Google Scholar 

  13. Brun, B.; Martins, F.; Faniel, S.; Hackens, B.; Bachelier, G.; Cavanna, A.; Ulysse, C.; Ouerghi, A.; Gennser, U.; Mailly, D. et al. Wigner and Kondo physics in quantum point contacts revealed by scanning gate microscopy. Nat. Commun. 2014, 5, 4290.

    Article  Google Scholar 

  14. Bauer, F.; Heyder, J.; Schubert, E.; Borowsky, D.; Taubert, D.; Bruognolo, B.; Schuh, D.; Wegscheider, W.; von Delft, J.; Ludwig, S. Microscopic origin of the “0.7-anomaly” in quantum point contacts. Nature 2013, 501, 73–78.

    Article  Google Scholar 

  15. Micolich, A. Double or nothing? Nat. Phys. 2013, 9, 530–531.

    Article  Google Scholar 

  16. Thomas, K. J.; Nicholls, J. T.; Appleyard, N. J.; Simmons, M. Y.; Pepper, M.; Mace, D. R.; Tribe, W. R.; Ritchie, D. A. Interaction effects in a one-dimensional constriction. Phys. Rev. B 1998, 58, 4846–4852.

    Article  Google Scholar 

  17. Danneau, R.; Klochan, O.; Clarke, W. R.; Ho, L. H.; Micolich, A. P.; Simmons, M. Y.; Hamilton, A. R.; Pepper, M.; Ritchie, D. A. 0.7 Structure and zero bias anomaly in ballistic hole quantum wires. Phys. Rev. Lett. 2008, 100, 016403.

    Article  Google Scholar 

  18. Smith, L. W.; Hamilton, A. R.; Thomas, K. J.; Pepper, M.; Farrer, I.; Griffiths, J. P.; Jones, G. A. C.; Ritchie, D. A. Compressibility measurements of quasi-one-dimensional quantum wires. Phys. Rev. Lett. 2011, 107, 126801.

    Article  Google Scholar 

  19. Burke, A. M.; Klochan, O.; Farrer, I.; Ritchie, D. A.; Hamilton, A. R.; Micolich, A. P. Extreme sensitivity of the spin-splitting and 0.7 anomaly to confining potential in one-dimensional nanoelectronic devices. Nano Lett. 2012, 12, 4495–4502.

    Article  Google Scholar 

  20. Komijani, Y.; Csontos, M.; Ihn, T.; Ensslin, K.; Meir, Y.; Reuter, D.; Wieck, A. D. Origins of conductance anomalies in a p-type GaAs quantum point contact. Phys. Rev. B 2013, 87, 245406.

    Article  Google Scholar 

  21. Grincwajg, A.; Edwards, G.; Ferry, D. K. Quasi-ballistic scattering in quantum point contact systems. J. Phys. Condens. Matter 1997, 9, 673–684.

    Article  Google Scholar 

  22. Chen, J. C.; Lin, Y. P.; Lin, K. T.; Ueda, T.; Komiyama, S. Effects of impurity scattering on the quantized conductance of a quasi-one-dimensional quantum wire. Appl. Phys. Lett. 2009, 94, 012105.

    Article  Google Scholar 

  23. Williamson, J. G.; Timmering, C. E.; Harmans, C. J. P. M.; Harris, J. J.; Foxon, C. T. Quantum point contact as a local probe of the electrostatic potential contours. Phys. Rev. B 1990, 42, 7675–7678.

    Article  Google Scholar 

  24. Sfigakis, F.; Das Gupta, K.; Sarkozy, S.; Farrer, I.; Ritchie, D. A.; Pepper, M.; Jones, G. A. C. Benefits of using undoped GaAs/AlGaAs heterostructures: A case study of the zero-bias bias anomaly in quantum wires. Physica E 2010, 42, 1200–1204.

    Article  Google Scholar 

  25. Glazman, L. I.; Larkin, I. A. Lateral position control of an electron channel in a split-gate device. Semicond. Sci. Technol. 1991, 6, 32–35.

    Article  Google Scholar 

  26. Sarkozy, S.; Sfigakis, F.; Das Gupta, K.; Farrer, I.; Ritchie, D. A.; Jones, G. A. C.; Pepper, M. Zero-bias anomaly in quantum wires. Phys. Rev. B 2009, 79, 161307.

    Article  Google Scholar 

  27. Crook, R.; Prance, J.; Thomas, K. J.; Chorley, S. J.; Farrer, I.; Ritchie, D. A.; Pepper, M.; Smith, C. G. Conductance quantization at a half-integer plateau in a symmetric GaAs quantum wire. Science 2006, 312, 1359–1362.

    Article  Google Scholar 

  28. Topinka, M. A.; LeRoy, B. J.; Westervelt, R. M.; Shaw, S. E. J.; Fleischmann, R.; Heller, E. J.; Maranowski, K. D.; Gossard, A. C. Coherent branched flow in a two-dimensional electron gas. Nature 2001, 410, 183–186.

    Article  Google Scholar 

  29. Jura, M. P.; Topinka, M. A.; Urban, L.; Yazdani, A.; Shtrikman, H.; Pfeiffer, L. N.; West, K. W.; Goldhaber-Gordon, D. Unexpected features of branched flow through high-mobility two-dimensional electron gases. Nat. Phys. 2007, 3, 841–845.

    Article  Google Scholar 

  30. Paradiso, N.; Heun, S.; Roddaro, S.; Biasiol, G.; Sorba, L.; Venturelli, D.; Taddei, F.; Giovannetti, V.; Beltram, F. Imaging backscattering through impurity-induced antidots in quantum Hall constrictions. Phys. Rev. B 2012, 86, 085326.

    Article  Google Scholar 

  31. Topinka, M. A.; LeRoy, B. J.; Shaw, S. E. J.; Heller, E. J.; Westervelt, R. M.; Maranowski, K. D.; Gossard, A. C. Imaging coherent electron flow from a quantum point contact. Science 2000, 289, 2323–2326.

    Article  Google Scholar 

  32. LeRoy, B. J.; Bleszynski, A. C.; Aidala, K. E.; Westervelt, R. M.; Kalben, A.; Heller, E. J.; Shaw, S. E. J.; Maranowski, K. D.; Gossard, A. C. Imaging electron interferometer. Phys. Rev. Lett. 2005, 94, 126801.

    Article  Google Scholar 

  33. Paradiso, N.; Heun, S.; Roddaro, S.; Sorba, L.; Beltram, F.; Biasiol, G.; Pfeiffer, L. N.; West, K. W. Imaging fractional incompressible stripes in integer quantum Hall systems. Phys. Rev. Lett. 2012, 108, 246801.

    Article  Google Scholar 

  34. Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

    Article  Google Scholar 

  35. Paradiso, N.; Heun, S.; Roddaro, S.; Pfeiffer, L. N.; West, K. W.; Sorba, L.; Biasiol, G.; Beltram, F. Selective control of edge-channel trajectories by scanning gate microscopy. Physica E 2010, 42, 1038–1041.

    Article  Google Scholar 

  36. Woodside, M. T.; Vale, C.; McEuen, P. L.; Kadow, C.; Maranowski, K. D.; Gossard, A. C. Imaging interedge-state scattering centers in the quantum Hall regime. Phys. Rev. B 2001, 64, 041310.

    Article  Google Scholar 

  37. Hackens, B.; Martins, F.; Ouisse, T.; Sellier, H.; Bollaert, S.; Wallart, X.; Cappy, A.; Chevrier, J.; Bayot, V.; Huant, S. Imaging and controlling electron transport inside a quantum ring. Nat. Phys. 2006, 2, 826–830.

    Article  Google Scholar 

  38. Gildemeister, A. E.; Ihn, T.; Sigrist, M.; Ensslin, K.; Driscoll, D. C.; Gossard, A. C. Measurement of the tip-induced potential in scanning gate experiments. Phys. Rev. B 2007, 75, 195338.

    Article  Google Scholar 

  39. Fallahi, P.; Bleszynski, A. C.; Westervelt, R. M.; Huang, J.; Walls, J. D.; Heller, E. J.; Hanson, M.; Gossard, A. C. Imaging a single-electron quantum dot. Nano Lett. 2005, 5, 223–226.

    Article  Google Scholar 

  40. Bleszynski, A. C.; Zwanenburg, F. A.; Westervelt, R. M.; Roest, A. L.; Bakkers, E. P. A. M.; Kouwenhoven, L. P. Scanned probe imaging of quantum dots inside InAs nanowires. Nano Lett. 2007, 7, 2559–2562.

    Article  Google Scholar 

  41. Schnez, S.; Güttinger, J.; Huefner, M.; Stampfer, C.; Ensslin, K.; Ihn, T. Imaging localized states in graphene nanostructures. Phys. Rev. B 2010, 82, 165445.

    Article  Google Scholar 

  42. Heller, E. J.; Aidala, K. E.; LeRoy, B. J.; Bleszynski, A. C.; Kalben, A.; Westervelt, R. M.; Maranowski, K. D.; Gossard, A. C. Thermal averages in a quantum point contact with a single coherent wave packet. Nano Lett. 2005, 5, 1285–1292.

    Article  Google Scholar 

  43. Jura, M. P.; Topinka, M. A.; Grobis, M.; Pfeiffer, L. N.; West, K. W.; Goldhaber-Gordon, D. Electron interferometer formed with a scanning probe tip and quantum point contact. Phys. Rev. B 2009, 80, 041303.

    Article  Google Scholar 

  44. Rejec, T.; Meir, Y. Magnetic impurity formation in quantum point contacts. Nature 2006, 442, 900–903.

    Article  Google Scholar 

  45. Potok, R. M.; Folk, J. A.; Marcus, C. M.; Umansky, V. Detecting spin-polarized currents in ballistic nanostructures. Phys. Rev. Lett. 2002, 89, 266602.

    Article  Google Scholar 

  46. Folk, J. A.; Potok, R. M.; Marcus, C. M.; Umansky, V. A gate-controlled bidirectional spin filter using quantum coherence. Science 2003, 299, 679–682.

    Article  Google Scholar 

  47. Debray, P.; Rahman, S. M. S.; Wan, J.; Newrock, R. S.; Cahay, M.; Ngo, A. T.; Ulloa, S. E.; Herbert, S. T.; Muhammad, M.; Johnson, M. All-electric quantum point contact spin-polarizer. Nat. Nanotechnol. 2009, 4, 759–764.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Heun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iagallo, A., Paradiso, N., Roddaro, S. et al. Scanning gate imaging of quantum point contacts and the origin of the 0.7 anomaly. Nano Res. 8, 948–956 (2015). https://doi.org/10.1007/s12274-014-0576-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0576-y

Keywords

Navigation