Skip to main content
Log in

Lithium-assisted exfoliation of pristine graphite for few-layer graphene nanosheets

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A lithium-assisted approach has been developed for the exfoliation of pristine graphite, which allows the large-scale preparation of few-layer graphene nanosheets. The process involves an unexpected physical insertion and exfoliation, and the graphene nanosheets prepared by this method reveal undisturbed sp2-hybridized structures. A possible two-step mechanism, which involves the negative charge being trapped around the edges of the graphite layers and a subsequent lithiation process, is proposed to explain the insertion of lithium inside the graphite interlayers. If necessary, the present exfoliation can be repeated and thinner (single or 2–3 layer) graphene can be achieved on a large scale. This simple process provides an efficient process for the exfoliation of pristine graphite, which might promote the future applications of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  3. Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Article  Google Scholar 

  4. Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271.

    Article  Google Scholar 

  5. Avouris, P.; Dimitrakopoulos, C. Graphene: Synthesis and applications. Mater. Today 2012, 15, 86–97.

    Article  Google Scholar 

  6. Wu, J. S.; Pisula, W.; Müllen, K. Graphene as potential material for electronics. Chem. Rev. 2007, 107, 718–747.

    Article  Google Scholar 

  7. Weiss, N. O.; Zhou, H. L.; Liao, L.; Liu, Y.; Jiang, S.; Huang, Y.; Duan, X. F. Graphene: An emerging electronic material. Adv. Mater. 2012, 43, 5782–5825.

    Article  Google Scholar 

  8. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 2010, 4, 611–622.

    Article  Google Scholar 

  9. Wang, X.; Zhi, L. J.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.

    Article  Google Scholar 

  10. Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924.

    Article  Google Scholar 

  11. Sun, Y. Q.; Wu, Q.; Shi, G. Q. Graphene based new energy materials. Energy Environ. Sci. 2011, 4, 1113–1132.

    Article  Google Scholar 

  12. Sahoo, N. G.; Pan, Y. Z.; Li, L.; Chan, S. H. Graphene-based materials for energy conversion. Adv. Mater. 2012, 24, 4203–4210.

    Article  Google Scholar 

  13. Xu, C. H.; Xu, B. H.; Gu, Y.; Xiong, Z. G.; Sun, J.; Zhao, X. S. Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 2013, 6, 1388–1414.

    Article  Google Scholar 

  14. Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.

    Article  Google Scholar 

  15. Yang, W. R.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding, J. J.; Braet, F. Carbon nanomaterials in Biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Ed. 2010, 49, 2114–2138.

    Article  Google Scholar 

  16. Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

    Article  Google Scholar 

  17. Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009, 4, 25–29.

    Article  Google Scholar 

  18. Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z. M.; McGovern, I. T. et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.

    Article  Google Scholar 

  19. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

    Article  Google Scholar 

  20. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  21. Virojanadara, C.; Syväjarvi, M.; Yakimova, R.; Johansson, L. I.; Zakharov, A. A.; Balasubramanian, T. Homogeneous large-area graphene layer growth in 6H-SiC(0001). Phys. Rev. B 2008, 78, 245403.

    Article  Google Scholar 

  22. Su, C. Y.; Lu, A. Y.; Xu, Y. P.; Chen, F. R.; Khlobystov, A. N.; Li, L. J. High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 2011, 5, 2332–2339.

    Article  Google Scholar 

  23. Wang, J. Z.; Manga, K. K.; Bao, Q. L.; Loh, K. P. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J. Am. Chem. Soc. 2011, 133, 8888–8891.

    Article  Google Scholar 

  24. Choucair, M.; Thordarson, P.; Stride, J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 2009, 4, 30–33.

    Article  Google Scholar 

  25. Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. Int. Ed. 2011, 50, 11093–11097.

    Article  Google Scholar 

  26. Vasil’ev, Y.; Wallis, D.; Nüchter, M.; Ondruschka, B.; Lobach, A.; Drewello, T. From major to minor and back—a decisive assessment of C60H36 with respect to the Birch reduction of C60. Chem. Commun. 2000, 1233–1234.

    Google Scholar 

  27. Birch, A. J. Reduction by dissolving metals. Part I. J. Chem. Soc. 1944, 430–436.

    Google Scholar 

  28. Subrahmanyam, K. S.; Kumar, P.; Maitra, U.; Govindaraj, A.; Hembram, K. P. S. S.; Waghmare, U. V.; Rao, C. N. R. Chemical storage of hydrogen in few-layer graphene. Proc. Natl. Acad. Sci. USA 2011, 108, 2674–2677.

    Article  Google Scholar 

  29. Liang, F.; Sadana, A. K.; Peera, A.; Chattopadhyay, J.; Gu, Z. N.; Hauge, R. H.; Billups, W. E. A convenient route to functionalized carbon nanotubes. Nano Lett. 2004, 4, 1257–1260.

    Article  Google Scholar 

  30. Yang, Z. Q.; Sun, Y. Q.; Alemany, L. B.; Narayanan, T. N.; Billups, W. E. Birch reduction of graphite edge and interior functionalization by hydrogen. J. Am. Chem. Soc. 2012, 134, 18689–18694.

    Article  Google Scholar 

  31. Deng, S. L.; Zhang, Y.; Brozena, A. H.; Mayes, M. L.; Banerjee, P.; Chiou, W. A.; Rubloff, G. W.; Schatz, G. C.; Wang, Y. H. Confined propagation of covalent chemical reactions on single-walled carbon nanotubes. Nat. Commun. 2011, 2, 382.

    Article  Google Scholar 

  32. Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758.

    Article  Google Scholar 

  33. Sun, C. F.; Karki, K.; Jia, Z.; Liao, H. W.; Zhang, Y.; Li, T.; Qi, Y.; Cumings, J.; Rubloff, G. W.; Wang, Y. H. A beaded-string silicon anode. ACS Nano 2013, 7, 2717–2724.

    Article  Google Scholar 

  34. Liu, W. W.; Wang, J. N. Direct exfoliation of graphene in organic solvents with addition of NaOH. Chem. Commun. 2011, 47, 6888–6890.

    Article  Google Scholar 

  35. Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

    Article  Google Scholar 

  36. Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 4, 1433–1441.

    Article  Google Scholar 

  37. Krishna, R.; Titus, E.; Costa, L. C.; Menezes, J. C. J. M. D. S.; Correia, M. R. P.; Pinto, S.; Ventura, J.; Araujo, J. P.; Cavaleiro, J. A. S.; Gracio, J. J. A. Facile synthesis of hydrogenated reduced graphene oxide via hydrogen spillover mechanism. J. Mater. Chem. 2012, 22, 10457–10459.

    Article  Google Scholar 

  38. Schafer, R. A.; Englert, J. M.; Wehrfritz, P.; Bauer, W.; Hauke, F.; Seyller, T.; Hirsch, A. On the way to graphane-pronounced fluorescence of polyhydrogenated graphene. Angew. Chem. Int. Ed. 2013, 52, 754–757.

    Article  Google Scholar 

  39. Pekker, S.; Salvetat, J. P.; Jakab, E.; Bonard, J. M.; Forró, L. Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J. Phys. Chem. B 2001, 105, 7938–7943.

    Article  Google Scholar 

  40. Chakraborty, S.; Chattopadhyay, J.; Guo, W. H.; Billups, W. E. Functionalization of potassium graphite. Angew. Chem. Int. Ed. 2007, 46, 4486–4488.

    Article  Google Scholar 

  41. Savoia, D.; Trombini, C.; Umani-Ronchi, A. Applications of potassium-graphite and metals dispersed on graphite in organic synthesis. Pure Appl. Chem. 1985, 57, 1887–1896.

    Article  Google Scholar 

  42. Matsumoto, R.; Akuzawa, N.; Takahashi, Y. Thermoelectric properties of cesium-graphite intercalation compounds. Mater. Trans. 2006, 47, 1458–1463.

    Article  Google Scholar 

  43. Viculis, L. M.; Mack, J. J.; Mayer, O. M.; Hahm, H. T.; Haner, R. B. Intercation and exfoliation routes to graphite nanoplatelets. J. Mater. Chem. 2005, 15, 974–978.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yin Zhang or Xiaoping Song.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Sun, H., Shen, C. et al. Lithium-assisted exfoliation of pristine graphite for few-layer graphene nanosheets. Nano Res. 8, 801–807 (2015). https://doi.org/10.1007/s12274-014-0562-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0562-4

Keywords

Navigation