Skip to main content
Log in

Flexible organic-inorganic hybrid photodetectors with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible photodetectors have become a focus of current researches because they may offer some unique applications in various new areas that require flexible, lightweight, and mechanical shock-resistive sensing elements. In this work, we designed flexible organic-inorganic hybrid photodetectors on various flexible substrates, including polyethylene terephthalate (PET), common Sellotape and polydimethylsiloxane (PDMS), with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires (NWs) as the active materials. The as-fabricated hybrid devices exhibited an optimized performance superior to the device made of pristine GaP NWs, with a fast response time (43 ms) and high on/off ratio (∼170). Under different bending conditions, the flexible hybrid photodetectors demonstrated excellent flexibility and electrical stability, which make them very promising for further large-scale, high sensitivity and high speed photodetector applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Weiss, N. O.; Duan, X. F. Building potential for graphene photodetectors. NPG Asia Mater. 2013, 5, e74.

    Article  Google Scholar 

  2. Liu, Y.; Cheng, R.; Liao, L.; Zhou, H. L.; Bai, J. W.; Liu, G.; Liu, L. X.; Huang, Y.; Duan, X. F. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2011, 2, 579.

    Article  Google Scholar 

  3. Fan, Z. Y.; Ho, J. C.; Jacobson, Z. A.; Razavi, H.; Javey, A. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. P. Natl. Acad. Sci. USA 2008, 105, 11066–11070.

    Article  Google Scholar 

  4. Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

    Article  Google Scholar 

  5. Liu, Z.; Luo, T.; Liang, B.; Chen, G.; Yu, G.; Xie, X. M.; Chen, D.; Shen, G. Z. High-detective InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 2013, 6, 775–783.

    Article  Google Scholar 

  6. Wang, J.-J.; Hu, J.-S.; Guo, Y.-G.; Wan, L.-J. Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic-inorganic hybrid photodetectors. NPG Asia Mater. 2012, 4, e2.

    Article  Google Scholar 

  7. Xue, D.-J.; Wang, J.-J.; Wang, Y.-Q.; Xin, S.; Guo, Y.-G.; Wan, L.-J. Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors. Adv. Mater. 2011, 23, 3704–3707.

    Article  Google Scholar 

  8. Wang, J.-J.; Wang, Y.-Q.; Cao, F.-F.; Guo, Y.-G.; Wan, L.-J. Synthesis of monodispersed wurtzite structure CuInSe2 nanocrystals and their application in high performance organic-inorganic hybrid photodetectors. J. Am. Chem. Soc. 2010, 132, 12218–12221.

    Article  Google Scholar 

  9. An, T. K.; Park, C. E.; Chuang, D. S. Polymer-nanocrystal hybrid photodetectors with planar heterojunctions designed strategically to yield a high photoconductive gain. Appl. Phys. Lett. 2013, 102, 193306.

    Article  Google Scholar 

  10. Wang, X. F.; Song, W. F.; Liu, B.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. High-performance organic-inorganic hybrid photodetectors based on P3HT:CdSe nanowires heterojunction on rigid and flexible substrates. Adv. Funct. Mater. 2013, 9, 1202–1209.

    Article  Google Scholar 

  11. Chen, G.; Liang, B.; Liu, X.; Liu, Z.; Yu, G.; Xie, X.; Luo, T.; Chen, D.; Zhu, M. Q.; Shen, G. Z.; et al.; High-performance hybrid phenyl-C61-butyric acid methyl ester/Cd3P2 nanowire ultraviolet-visible-near infrared photodetectors. ACS Nano 2014, 8, 787–796.

    Article  Google Scholar 

  12. Yoo, J.; Pyo, J.; Je, J. H. Single inorganic-organic hybrid nanowires with ambipolar photoresponse. Nanoscale, 2014, 6, 3557–3560.

    Article  Google Scholar 

  13. Lin, H. W.; Liu, H. B.; Qian, X. M.; Lai, S.-W.; Li, Y. J.; Chen, N.; Ouyang, C.; Che, C.-M.; Li, Y. L. Constructing a blue light photodetector on inorganic/organic p-n heterojunction nanowire arrays. Inorg. Chem. 2011, 50, 7749–7753.

    Article  Google Scholar 

  14. Dhara, S.; Giri, P. K. ZnO/anthracene based inorganic/organic nanowire heterostructure: Photoresponse and photoluminescence studies. J. Appl. Phys. 2012, 111, 044320.

    Article  Google Scholar 

  15. Chen, G.; Liu, Z.; Liang, B.; Yu, G.; Xie, Z.; Huang, H. T.; Liu, B.; Wang, X. F.; Chen, D.; Zhu, M.-Q.; Shen, G. Z. Single-crystalline Zn3As2 nanowires for field-effect transistors and visible-light photodetectors on rigid and flexible substrates. Adv. Funct. Mater. 2013, 23, 2681–2690.

    Article  Google Scholar 

  16. Chen, Z.-G.; Cheng, L. N.; Lu, G. Q.; Zou, J. Sulfur-doped gallium phosphide nanowires and their optoelectronic properties. Nanotechnology 2010, 21, 375701.

    Article  Google Scholar 

  17. Shen, G. Z.; Chen, P.-C.; Bando, Y.; Golberg, D.; Zhou, C. W. Pearl-like ZnS-decorated InP nanowire heterostructures and their electric behaviors. Chem. Mater. 2008, 20, 6779–6783.

    Article  Google Scholar 

  18. Peng, H. S.; Jain, M.; Li, Q. W.; Peterson, D. E.; Zhu, Y. T.; Jia, Q. X. Vertically aligned pearl-like carbon nanotube arrays for fiber spinning. J. Am. Chem. Soc. 2008, 130, 1130–1131.

    Article  Google Scholar 

  19. Shen, G. Z.; Bando, Y.; Lee, C.-J. Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process. J. Phys. Chem. B 2005, 109, 10578–10583.

    Article  Google Scholar 

  20. Rafiq, M. A.; Durrani, Z. A. K.; Mizuta, H.; Colli, A.; Servati, P.; Ferrari, A. C.; Miline, W. I.; Oda, S. Room temperature single electron charging in single silicon nanochains. J. Appl. Phys. 2008, 103, 053705.

    Article  Google Scholar 

  21. Szendrei, K.; Cordella, F.; Kovalenko, M. V.; Boberl, M.; Hesser, G.; Yarama, M.; Jarzab, D.; Mikhnenko, O. V.; Gocalinska, A.; Saba, M.; et al. Solution-processable near-IR photodetectors based on electron transfer from PbS nanocrystals to fullerene derivatives. Adv. Mater. 2009, 21, 683–687.

    Article  Google Scholar 

  22. Liu, Z.; Chen, G.; Liang, B.; Yu, G.; Huang, H. T.; Chen, D.; Shen, G. Z. Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors. Opt. Exp. 2013, 21, 7799–7810.

    Article  Google Scholar 

  23. Wu, P. C.; Dai, Y.; Ye, Y.; Yin, Y.; Dai, L. Fast-speed and high-gain photodetectors of individual single crystalline Zn3P2 nanowires. J. Mater. Chem. 2011, 21, 2563–2567.

    Article  Google Scholar 

  24. Günes, S.; Sariciftci, N. S. Hybrid solar cells. Inorg. Chim. Acta 2008 361, 581–588.

    Article  Google Scholar 

  25. Huynh, W. U.; Dittmer, J. J. Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425–2427.

    Article  Google Scholar 

  26. Zhu, H. F.; Li, T.; Zhang, Y. J.; Dong, H. L.; Song, J. S.; Zhao, H. P.; Wei, Z. M.; Xu, W.; Hu, W. P.; Bo, Z. S. High-performance organic nanoscale photoswitches based on nanogap electrodes coated with a blend of poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester. Adv. Mater. 2010, 22, 1645–1648.

    Article  Google Scholar 

  27. Taylor, T. R.; Gomez, H.; Asmis, K. R.; Neumark, D. M. Photoelectron spectroscopy of GaX2 -, Ga2X-, and Ga2X3 — (X = P, As). J. Chem. Phys. 2001, 115, 4620–4631.

    Article  Google Scholar 

  28. Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 2006, 18, 789–794.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhen Shen.

Additional information

G. Chen and X. Xie are visiting students from Huazhong University of Science and Technology. They contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Xie, X. & Shen, G. Flexible organic-inorganic hybrid photodetectors with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires. Nano Res. 7, 1777–1787 (2014). https://doi.org/10.1007/s12274-014-0537-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0537-5

Keywords

Navigation