Skip to main content
Log in

III–V semiconductor nanocrystal formation in silicon nanowires via liquid-phase epitaxy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Direct integration of high-mobility III–V compound semiconductors with existing Si-based complementary metal-oxide-semiconductor (CMOS) processing platforms presents the main challenge to increasing the CMOS performance and the scaling trend. Silicon hetero-nanowires with integrated III–V segments are one of the most promising candidates for advanced nano-optoelectronics, as first demonstrated using molecular beam epitaxy techniques. Here we demonstrate a novel route for InAs/Si hybrid nanowire fabrication via millisecond range liquid-phase epitaxy regrowth using sequential ion beam implantation and flash-lamp annealing. We show that such highly mismatched systems can be monolithically integrated within a single nanowire. Optical and microstructural investigations confirm the high quality hetero-nanowire fabrication coupled with the formation of atomically sharp interfaces between Si and InAs segments. Such hybrid systems open new routes for future high-speed and multifunctional nanoelectronic devices on a single chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hocevar, M.; Immink, G.; Verheijen, M.; Akopian, N.; Zwiller, V.; Kouwenhoven, L.; Bakkers, E. Growth and optical properties of axial hybrid III–V/silicon nanowires. Nat. Commun. 2012, 3, 1266.

    Article  Google Scholar 

  2. Tomioka, K.; Yoshimura, M.; Fukui, T. A III–V nanowire channel on silicon for high-performance vertical transistors. Nature 2012, 488, 189–192.

    Article  Google Scholar 

  3. Justice, J.; Bower, Ch.; Meitl, M.; Mooney, M. B.; Gubbins, M. A.; Corbett, B. Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers. Nat. Photon. 2012, 6, 610–614.

    Article  Google Scholar 

  4. Bessire, C. D.; Björk, M. T.; Schmid, H.; Schenk, A.; Reuter, K. B.; Riel, H.; Trap-assisted tunneling in Si-InAs nanowire heterojunction tunnel diodes. Nano Lett. 2011, 11, 4195–4199.

    Article  Google Scholar 

  5. Ng, K. W.; Ko, W. S.; Tran, T. T.; Chen, R.; Nazarenko, M. V.; Lu, F.; Dubrovskii, V. G.; Kamp, M.; Forchel, A.; Chang-Hasnain, C. J. Unconventional growth mechanism for monolithic integration of III–V on silicon. ACS Nano 2013, 7, 100–107.

    Article  Google Scholar 

  6. del Alamo, J. A. Nanometre-scale electronics with III–V compound semiconductors. Nature 2011, 479, 317–323.

    Article  Google Scholar 

  7. Lubyshev, D.; Fastenau, J. M.; Liu, W. K. Integration of III–V and Si CMOS devices by molecular beam epitaxy. ECS Transactions 2009, 19, 295–308.

    Article  Google Scholar 

  8. Colinge, J.-P.; Lee, Ch.-W.; Afzalian, A.; Akhavan, N. D.; Yan, R.; Ferain, I.; Razavi, P.; O’Neill, B.; Blake, A.; White, M. et al. Nanowire transistors without junctions. Nat. Nanotechnol. 2010, 5, 225–229.

    Article  Google Scholar 

  9. Razavi, P.; Fagas, G. Electrical performance of III–V gate-all-around nanowire transistors. Appl. Phys. Lett. 2013, 103, 063506.

    Article  Google Scholar 

  10. Colli, A.; Fasoli, A.; Ronning, C.; Pisana, S.; Piscanec, S.; Ferrari, A. C. Ion beam doping of silicon nanowires. Nano Lett. 2008, 8, 2188–2193.

    Article  Google Scholar 

  11. Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149–152.

    Article  Google Scholar 

  12. Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high performance field-effect transistors. Nature 2006, 441, 489–493.

    Article  Google Scholar 

  13. Lu, W.; Xie, P.; Lieber, C. M. Nanowire transistor performance limits and applications. IEEE Trans. Electron Dev. 2008, 55, 2859–2876.

    Article  Google Scholar 

  14. Fan, P. Y.; Chettiar, U. K.; Cao, L. Y.; Afshinmanesh, F.; Engheta, N.; Brongersma. M. L. An invisible metal-semiconductor photodetector. Nat. Photon. 2012, 6, 380–385.

    Article  Google Scholar 

  15. Limbach, F.; Hauswald, C.; Lähnemann, J.; Wölz, M.; Brandt, O.; Trampert, A.; Hanke, M.; Jahn, U.; Calarco, R.; Geelhaar L. et al. Current path in light emitting diodes based on nanowire ensembles. Nanotechnology 2012, 23, 465301.

    Article  Google Scholar 

  16. Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R. S.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.

    Article  Google Scholar 

  17. Dick, K. A.; Kodambaka, S.; Reuter, M. C.; Deppert, K.; Samuelson, L.; Seifert, W.; Wallenberg, L. R.; Ross, F. M. The morphology of axial and branched nanowire heterostructures. Nano Lett. 2007, 7, 1817–1822.

    Article  Google Scholar 

  18. Lauhon, L. J.; Gudiksen, M. S.; Wang, D. L.; Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002, 420, 57–61.

    Article  Google Scholar 

  19. Prucnal, S.; Facsko, S.; Baumgart, C.; Schmidt, H.; Liedke, M. O.; Rebohle, L.; Shalimov, A.; Reuther, H.; Kanjilal, A.; Mücklich, A. et al. n-InAs nanopyramids fully integrated into silicon. Nano Lett. 2011, 11, 2814–2818.

    Article  Google Scholar 

  20. Prucnal, S.; Zhou, S. Q.; Ou, X.; Reuther, H.; Liedke, M. O.; Mücklich, A.; Helm, M.; Zuk, J.; Turek, M.; Pyszniak K. et al. InP nanocrystals on silicon for optoelectronic applications. Nanotechnology 2012, 23, 485204.

    Article  Google Scholar 

  21. Prucnal, S.; Zhou, S. Q.; Ou, X.; Facsko, S. Liedke, M. O.; Bregolin, F.; Liedke, B.; Grebing, J.; Fritzsche, M.; Hübner, R. et al. III–V/Si on silicon-on-insulator platform for hybrid nanoelectronics. J. Appl. Phys. 2014, 115, 074306.

    Article  Google Scholar 

  22. Lugstein, A.; Steinmair, M.; Hyun, Y. J.; Hauer, G.; Pongratz, P.; Bertagnolli, E. Pressure-induced orientation control of the growth of epitaxial silicon nanowires. Nano Lett. 2008, 8, 2310–2314.

    Article  Google Scholar 

  23. Skorupa, W.; Gebel, T.; Yankov, R. A.; Paul, S.; Lerch, W.; Downey, D. F.; Arevalo, E. A. J. Advanced thermal processing of ultrashallow implanted junctions using flash lamp annealing. J. Electrochem. Soc. 2005, 152, G436–G440.

    Article  Google Scholar 

  24. Thompson, M. O.; Galvin, G. J.; Mayer, J. W.; Peercy, P. S.; Poate, J. M.; Jacobson, D. C.; Cullis, A. G.; Chew, N. G. Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation. Phys. Rev. Lett. 1984, 52, 2360.

    Article  Google Scholar 

  25. Garandet, J. P. New Determinations of diffusion coefficients for various dopants in liquid silicon. Int. J. Thermophys. 2007, 28, 1285–1303.

    Article  Google Scholar 

  26. Geiler, H.-D.; Glaser, E.; Götz, G.; Wagner, M. J. Explosive crystallization in silicon. J. Appl. Phys. 1986, 59, 3091.

    Article  Google Scholar 

  27. Ohdaira, K.; Fujiwara, T.; Endo, Y.; Nishizaki, S.; Matsumura, H. Explosive crystallization of amorphous silicon films by flash lamp annealing. J. Appl. Phys. 2009, 106, 044907.

    Article  Google Scholar 

  28. Smith, M.; McMahon, R. A.; Voelskow, M.; Skorupa, W. Modeling and regrowth mechanisms of flash lamp processing of SiC-on-silicon heterostructures. J. Appl. Phys. 2004, 96, 4843.

    Article  Google Scholar 

  29. Martienssen, W.; Warlimont, H. Springer Handbook of Condensed Matter and Materials Data; Springer: Berlin, 2005.

    Book  Google Scholar 

  30. Prucnal, S.; Turek, M.; Drozdziel, A.; Pyszniak, K.; Zhou, S. Q.; Kanjilal, A.; Skorupa, W.; Zuk, J. Formation of InAs quantum dots in silicon by sequential ion implantation and flash lamp annealing. Appl. Phys. B 2010, 101, 315–319.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slawomir Prucnal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prucnal, S., Glaser, M., Lugstein, A. et al. III–V semiconductor nanocrystal formation in silicon nanowires via liquid-phase epitaxy. Nano Res. 7, 1769–1776 (2014). https://doi.org/10.1007/s12274-014-0536-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0536-6

Keywords

Navigation