Skip to main content
Log in

Fabrication of chiral plasmonic oligomers using cysteine-modified gold nanorods as monomers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Generation of circular dichroism (CD) beyond the UV region is of great interest in developing chiral sensors and chiroptical devices. Herein, we demonstrate a simple and versatile method for fabrication of plasmonic oligomers with strong CD response in the visible and near IR spectral range. The oligomers were fabricated by triggering the side-by-side assembly of cysteine-modified gold nanorods. The modified nanorods themselves did not exhibit obvious plasmonic CD signals; however, the oligomers show strong CD bands around the plasmon resonance wavelength. The sign of the CD band was dictated by the chirality of the absorbed cysteine molecules. By adjusting the size of the oligomers, the concentration of chiral molecules, and/or the aspect ratio of the nanorods, the CD intensity and spectral range were readily tunable. Theoretical calculations suggested that CD of the oligomers originated from a slight twist of adjacent nanorods within the oligomer. Therefore, we propose that the adsorbed chiral molecules are able to manipulate the twist angles between the nanorods and thus modulate the CD response of the oligomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Valev, V. K.; Baumberg, J. J.; Sibilia, C.; Verbiest, T. Chirality and chiroptical effects in plasmonic nanostructures: Fundamentals, recent progress, and outlook. Adv. Mater. 2013, 25, 2517–2534.

    Article  Google Scholar 

  2. Guerrero-Martínez, A.; Alonso-Gómez, J. L.; Auguié, B.; Cid, M. M.; Liz-Márzan, L. M. From individual to collective chirality in metal nanoparticles. Nano Today 2011, 6, 381–400.

    Article  Google Scholar 

  3. Ben-Moshe, A.; Maoz, B. M.; Govorov, A. O.; Markovich, G. Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances. Chem. Soc. Rev. 2013, 42, 7028–7041.

    Article  Google Scholar 

  4. Hendry, E.; Carpy, T.; Johnston, J.; Popland, M.; Mikhaylovskiy, R. V.; Lapthorn, A. J.; Kelly, S. M.; Barron, L. D.; Gadegaard, N.; Kadodwala, M. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 2010, 5, 783–787.

    Article  Google Scholar 

  5. Wu, X. L.; Xu, L. G.; Liu, L. Q.; Ma, W.; Yin, H. H.; Kuang, H.; Wang, L. B.; Xu, C. L.; Kotov, N. A. Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J. Am. Chem. Soc. 2013, 135, 18629–18636.

    Article  Google Scholar 

  6. Ma, W.; Kuang, H.; Xu, L. G.; Ding, L.; Xu, C. L.; Wang, L. B.; Kotov, N. A. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 2013, 4, 2689.

    Google Scholar 

  7. Pendry, J. B. A chiral route to negative refraction. Science 2004, 306, 1353–1355.

    Article  Google Scholar 

  8. Gansel, J. K.; Thiel, M.; Rill, M. S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Gold helix photonic metamaterial as broadband circular polarizer. Science 2009, 325, 1513–1515.

    Article  Google Scholar 

  9. Hentschel, M.; Schäferling, M.; Weiss, T.; Liu, N.; Giessen, H. Three-dimensional chiral plasmonic oligomers. Nano Lett. 2012, 12, 2542–2547.

    Article  Google Scholar 

  10. Lu, F.; Tian, Y.; Liu, M. Z.; Su, D.; Zhang, H.; Gorovov, A.; Gang, O. Discrete nanocubes as plasmonic reporters of molecular chirality. Nano Lett. 2013, 13, 3145–3151.

    Article  Google Scholar 

  11. Slocik, J. M.; Govorov, A. O.; Naik, R. R. Plasmonic circular dichroism of peptide-functionalized gold nanoparticles. Nano Lett. 2011, 11, 701–705.

    Article  Google Scholar 

  12. Zhu, Z. N.; Liu, W. J.; Li, Z. T.; Han, B.; Zhou, Y. L.; Gao, Y.; Tang, Z. Y. Manipulation of collective optical activity in one-dimensional plasmonic assembly. ACS Nano 2012, 6, 2326–2332.

    Article  Google Scholar 

  13. Govorov, A. O.; Fan, Z. Y.; Hernandez, P.; Slocik, J. M.; Naik, R. R. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 2010, 10, 1374–1382.

    Article  Google Scholar 

  14. Chen, W.; Bian, A.; Agarwal, A.; Liu, L. Q.; Shen, H. B.; Wang, L. B.; Xu, C. L.; Kotov, N. A. Nanoparticle superstructures made by polymerase chain reaction: Collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett. 2009, 9, 2153–2159.

    Article  Google Scholar 

  15. Kuzyk, A.; Schreiber, R.; Fan, Z. Y.; Pardatscher, G.; Roller, E. M.; Högele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311–314.

    Article  Google Scholar 

  16. Lan, X.; Chen, Z.; Dai, G. L.; Lu, X. X.; Ni, W. H.; Wang, Q. B. Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. J. Am. Chem. Soc. 2013, 135, 11441–11444.

    Article  Google Scholar 

  17. Shen, X. B.; Zhan, P. F.; Kuzyk, A.; Liu, Q.; Asenjo-Garcia, A.; Zhang, H.; de Abajo, F. J. G.; Govorov, A.; Ding, B. Q.; Liu, N. 3D plasmonic chiral colloids. Nanoscale 2014, 6, 2077–2081.

    Article  Google Scholar 

  18. Wang, R. Y.; Wang, H. L.; Wu, X. C.; Ji, Y. L.; Wang, P.; Qu, Y.; Chung, T. S. Chiral assembly of gold nanorods with collective plasmonic circular dichroism response. Soft Matter 2011, 7, 8370–8375.

    Article  Google Scholar 

  19. Guerrero-Martínez, A.; Auguié, B.; Alonso-Gómez, J. L.; Džolić, Z.; Gómez-Graña, S.; Žinić, M.; Cid, M. M.; Liz-Marzán, L. M. Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas. Angew. Chem. Int. Ed. 2011, 50, 5499–5503.

    Article  Google Scholar 

  20. Querejeta-Fernández, A.; Chauve, G.; Methot, M.; Bouchard, J.; Kumacheva, E. Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J. Am. Chem. Soc. 2014, 136, 4788–4793.

    Article  Google Scholar 

  21. Jung, S. H.; Jeon, J.; Kim, H.; Jaworski, J.; Jung, J. H. Chiral arrangement of achiral Au nanoparticles by supramolecular assembly of helical nanofiber templates. J. Am. Chem. Soc. 2014, 136, 6446–6452.

    Article  Google Scholar 

  22. Fan, Z. Y.; Govorov, A. O. Plasmonic circular dichroism of chiral metal nanoparticle assemblies. Nano Lett. 2010, 10, 2580–2587.

    Article  Google Scholar 

  23. Auguié, B.; Alonso-Gómez, J. L.; Guerrero-Martínez, A.; Liz-Marzán, L. M. Fingers crossed: Optical activity of a chiral dimer of plasmonic nanorods. J. Phys. Chem. Lett. 2011, 2, 846–851.

    Article  Google Scholar 

  24. Ma, W.; Kuang, H.; Wang, L. B.; Xu, L. G.; Chang, W. S.; Zhang, H. N.; Sun, M. Z.; Zhu, Y. Y.; Zhao, Y.; Liu, L. Q. et al. Chiral plasmonics of self-assembled nanorod dimers. Sci. Rep. 2013, 3, 1934.

    Google Scholar 

  25. Jain, P. K.; Eustis, S.; El-Sayed, M. A. Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J. Phys. Chem. B 2006, 110, 18243–18253.

    Article  Google Scholar 

  26. Zhang, H.; Govorov, A. O. Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals. Phys. Rev. B 2013, 87, 075410.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongyao Wang, Zhijian Hu or Xiaochun Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, S., Wen, T., Zhang, H. et al. Fabrication of chiral plasmonic oligomers using cysteine-modified gold nanorods as monomers. Nano Res. 7, 1699–1705 (2014). https://doi.org/10.1007/s12274-014-0530-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0530-z

Keywords

Navigation