Skip to main content
Log in

Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The progressive stacking of chalcogenide single layers gives rise to two-dimensional semiconducting materials with tunable properties that can be exploited for new field-effect transistors and photonic devices. Yet the properties of some members of the chalcogenide family remain unexplored. Indium selenide (InSe) is attractive for applications due to its direct bandgap in the near infrared, controllable p- and n-type doping and high chemical stability. Here, we reveal the lattice dynamics, optical and electronic properties of atomically thin InSe flakes prepared by micromechanical cleavage. Raman active modes stiffen or soften in the flakes depending on which electronic bonds are excited. A progressive blue-shift of the photoluminescence peaks is observed for decreasing flake thickness (as large as 0.2 eV for three single layers). First-principles calculations predict an even larger increase in the bandgap, 0.40 eV, for three single layers, and as much as 1.1 eV for a single layer. These results are promising from the point of view of the versatility of this material for optoelectronic applications at the nanometer scale and compatible with Si and III-V technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, G.; Yu, K.; Wen, Z.; Chen, J. Semiconducting graphene: converting graphene from semimetal to semiconductor. Nanoscale 2013, 5, 1353–1368.

    Article  Google Scholar 

  2. Wang, F.; Liu, G.; Rothwell, S.; Nevius, M.; Tejeda, A.; Taleb-Ibrahimi, A.; Feldman, L. C.; Cohen, P. I.; Conrad, E. H. Wide-gap semiconducting graphene from Nitrogen-seeded SiC. Nano Lett. 2013, 13, 4827–4832.

    Article  Google Scholar 

  3. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  4. Wang, Y.; Brar, V. W.; Shytov, A. V.; Wu, Q.; Regan, W.; Tsai, H.-Z.; Zettl, A.; Levitov, L. S.; Crommie, M. F. Mapping Dirac quasiparticles near a single Coulomb impurity on graphene. Nat. Phys. 2012, 8, 653–657.

    Article  Google Scholar 

  5. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  6. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    Article  Google Scholar 

  7. Ayari, A.; Cobas, E.,; Ogundadegbe, O.; Fuhrer, M. S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 2007, 101, 014507.

    Article  Google Scholar 

  8. Zhang, Y.; Ye, J.; Matsuhashi, Y.; Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett. 2012, 12, 1136–1140.

    Article  Google Scholar 

  9. Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788–3792.

    Article  Google Scholar 

  10. Braga D.; Gutiérrez Lezama, I.; Berger, H.; Morpurgo, A. F. Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett. 2012, 12, 5218–5223.

    Article  Google Scholar 

  11. Hwang, W. S.; Remskar, M.; Yan, R.; Protasenko, V.; Tahy, K.; Chae, S. D.; Zhao, P.; Konar, A.; Xing, H.; Seabaugh, A.; et al. Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Appl. Phys. Lett. 2012, 101, 013107.

    Article  Google Scholar 

  12. Liu, K. K.; Zhang, W.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y.; Zhang, H.; et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544.

    Article  Google Scholar 

  13. Elias, A. L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R.; Feng, S.; Long, A. D.; Hayashi, T.; Kim, Y. A.; Endo, M.; et al. Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano 2013, 7, 5235–5242.

    Article  Google Scholar 

  14. Mak; K. F.; He, K.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498.

    Article  Google Scholar 

  15. Zeng, H.; Dai, J.; Yao, W.; Xiao, D.; Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.

    Article  Google Scholar 

  16. Cao, T.; Wang, G.; Han, W.; Ye, H.; Zhu, C.; Shi, J.; Niu, Q.; Tan, P.; Wang, E.; Liu, B.; et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.

    Article  Google Scholar 

  17. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  18. Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J.; Grossman, J. C.; Wu, J. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576–5580.

    Article  Google Scholar 

  19. Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P.-H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797.

    Article  Google Scholar 

  20. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechol. 2013, 8, 497–501.

    Article  Google Scholar 

  21. Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y.; Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262–267.

    Article  Google Scholar 

  22. Gauthier, M.; Polian, A.; Besson, J. M.; Chevy, A. Optical properties of gallium selenide under high pressure. Phys. Rev. B 1989, 40, 3837–3854.

    Article  Google Scholar 

  23. Bringuier, E.; Bourdon, A.; Piccioli, N.; Chevy, A. Optical second-harmonic generation in lossy media: Application to GaSe and InSe. Phys. Rev. B 1994, 49, 16971–16982.

    Article  Google Scholar 

  24. Segura, A.; Bouvier, J.; Andrés, M. V.; Manjón, F. J.; Muñoz, V. Strong optical nonlinearities in gallium and indium selenides related to inter-valence-band transitions induced by light pulses. Phys. Rev. B 1997, 56, 4075–4084.

    Article  Google Scholar 

  25. Ferrer-Roca, Ch.; Bouvier, J.; Segura, A.; Andrés, M. V.; Muñoz, V. Light-induced transmission nonlinearities in gallium selenide. J. Appl. Phys. 1999, 85, 3780–3785.

    Article  Google Scholar 

  26. Camassel, J.; Merle, P.; Mathieu, H.; Chevy, A. Excitonic absorption edge of indium selenide. Phys. Rev. B 1978, 17, 4718–4725.

    Article  Google Scholar 

  27. Manjón, F. J.; Errandonea, D.; Segura, A.; Muñoz, V.; Tobías, G.; Ordejón, P.; Canadell, E. Experimental and theoretical study of band structure of InSe and In1−x GaxSe (x < 0.2) under high pressure. Phys. Rev. B 2001, 63, 125330.

    Article  Google Scholar 

  28. Errandonea, D.; Segura, A.; Manjón, F. J.; Chevy, A.; Machado, E.; Tobias, G.; Ordejón, P.; Canadell, E. Crystal symmetry and pressure effects on the valence band structure of Γ-InSe and ɛ-GaSe: Transport measurements and electronic structure calculations. Phys. Rev. B 2005, 71, 125206.

    Article  Google Scholar 

  29. Sánchez-Royo, J. F.; Segura, A.; Lang, O.; Schaar, E.; Pettenkofer, C.; Jaegermann, W.; Roa, L.; Chevy, A. Optical and photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy. J. Appl. Phys. 2001, 90, 2818–2823.

    Article  Google Scholar 

  30. Julien, C.; Balkanski, M. Thin-film growth and structure for solid-state batteries. Appl. Surf. Sci. 1991, 48–49, 1–11.

    Article  Google Scholar 

  31. Martinez-Pastor, J.; Segura, A.; Valdes, J. L.; Chevy, A. Electrical and photovoltaic properties of indium-tin-oxide/p-InSe/Au solar cells. J. Appl. Phys. 1987, 62, 1477–1483.

    Article  Google Scholar 

  32. Rybkovskiy, D. V.; Arutyunyan, N. R.; Orekhov, A. S.; Gromchenko, I. A.; Vorobiev, I. V.; Osadchy, A. V.; Salaev, E. Yu.; Baykara, T. K.; Allakhverdiev, K. R.; Obraztsova, E. D. Size-induced effects in gallium selenide electronic structure: The influence of interlayer interactions. Phys. Rev. B 2011, 84, 085314.

    Article  Google Scholar 

  33. Hu, P.A.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012, 6, 5988–5994.

    Article  Google Scholar 

  34. Lei, S.; Ge, L.; Najmaei, S.; George, A.; Kappera, R.; Lou, J.; Chhowalla, M.; Yamaguchi, H.; Gupta, G.; Vajtai, R.; Mohite, A. D.; Ajayan, P. M. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano 2014, 8, 1263–1272.

    Article  Google Scholar 

  35. Late, D. J.; Liu, B.; Luo, J.; Yan, A.; Ramakrishna Matte, H. S. S.; Grayson, M.; Rao, C. N. R.; Dravid, V. P. GaS and GaSe ultrathin layer transistors. Adv. Mater. 2012, 24, 3549–3554.

    Article  Google Scholar 

  36. Mudd, G. W.; Svatek, S. A.; Ren, T.; Patanè, A.; Makarovsky, O.; Eaves, L.; Beton, P. H.; Kovalyuk, Z. D.; Lashkarev, G. V.; Kudrynskyi, Z. R.; et al. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement. Adv. Mater. 2013, 25, 5714–5718.

    Article  Google Scholar 

  37. Rigoult, J.; Rimsky, A.; Kuhn, A. Refinement of the 3R Γ-indium monoselenide structure type. Acta Cryst. B 1980, 36, 916–918.

    Article  Google Scholar 

  38. Faradev, F. E.; Gasanly, N. M.; Mavrin, B. N.; Melnik, N. N. Raman scattering in some III–VI layer single crystals. Phys. Stat. Sol. (b) 1978, 85, 381–386.

    Article  Google Scholar 

  39. Kuroda N.; Nishina, Y. Resonant Raman scattering at higher M0 exciton edge in layer compound InSe. Solid State Commun. 1978, 28, 439–443.

    Article  Google Scholar 

  40. Millot, M.; Broto, J.-M.; George, S.; González, J.; Segura, A. Electronic structure of indium selenide probed by magnetoabsorption spectroscopy under high pressure. Phys. Rev. B 2010, 81, 205211.

    Article  Google Scholar 

  41. Mulliken, R. S. Electronic population analysis on LCAO-MO molecular wave functions. I. J. Chem. Phys. 1955, 23, 1833–1840.

    Article  Google Scholar 

  42. Mulliken, R. S. Electronic population analysis on LCAO-MO molecular wave functions. II. J. Chem. Phys. 1955, 23, 1841–1846.

    Article  Google Scholar 

  43. Arenal, R.; Ferrari, A. C.; Reich, S.; Wirtz, L.; Mevellec, J.-Y.; Lefrant, S.; Rubio, A.; Loiseau, A. Raman spectroscopy of single-wall boron nitride nanotubes. Nano Lett. 2006, 6, 1812–1816.

    Article  Google Scholar 

  44. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  Google Scholar 

  45. Zeng, H.; Liu, G.-B.; Dai, J.; Yan, Y.; Zhu, B.; He, R.; Xie, L.; Xu, S.; Chen, X.; Yao, W.; Cui, X. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 2013, 3, 1608.

    Google Scholar 

  46. Riera, J.; Segura, A.; Chevy, A. Photoluminescence in silicon-doped n-indium selenide. Phys. Stat. solidi (a) 1994, 142, 265–274.

    Article  Google Scholar 

  47. Ferrer-Roca, Ch.; Segura, A.; Andrés, M. V.; Pellicer, J.; Muñoz, V. Investigation of nitrogen-related acceptor centers in indium selenide by means of photoluminescence: Determination of the hole effective mass. Phys. Rev. B 1997, 55, 6981–6987.

    Article  Google Scholar 

  48. Segura, A.; Guesdon, J. P.; Besson, J. M.; Chevy, A. Photoconductivity and photovoltaic effect in indium selenide. J. Appl. Phys. 1983, 54, 876–888.

    Article  Google Scholar 

  49. Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 2012, 86, 115409.

    Article  Google Scholar 

  50. Manjón, F. J.; Segura, A.; Muñoz-Sanjosé, V.; Tobías, G.; Ordejón, P.; Canadell, E. Band structure of indium selenide investigated by intrinsic photoluminescence under high pressure. Phys. Rev. B 2004, 70, 125201.

    Article  Google Scholar 

  51. Martinez-Pastor, J.; Segura, A.; Julien, C.; Chevy, A. Shallow-donor impurities in indium selenide investigated by means of far-infrared spectroscopy. Phys. Rev. B 1992, 46, 4607–4616.

    Article  Google Scholar 

  52. Davies, J. H. The Physics of Low-dimensional Semiconductors: An Introduction. Cambridge University Press: New York, 1997.

    Book  Google Scholar 

  53. Dvorak, M.; Wei, S.-H.; Wu, Z. Origin of the variation of exciton binding energy in semiconductors. Phys. Rev. Lett. 2013, 110, 016402.

    Article  Google Scholar 

  54. Youn, D.-H.; Yu, Y.-J.; Choi, H.; Kim, S.-H.; Choi, S.-Y.; Choi, C.-G. Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes. Nanotechnology 2013, 24, 075202.

    Article  Google Scholar 

  55. Lee, M. S.; Lee, K.; Kim, S.-Y.; Lee, H.; Park, J.; Choi, K.-H.; Kim, H.-K.; Kim, D.-G.; Lee, D.-Y.; Nam, S.; Park, J.-U. High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 2013, 13, 2814–2821.

    Article  Google Scholar 

  56. Shigetomi, S.; Ikari, T. Electrical and optical properties of n- and p-InSe doped with Sn and As. J. Appl. Phys. 2003, 93, 2301–2303.

    Article  Google Scholar 

  57. Micocci, G.; Tepore, A.; Rella, R.; Siciliano, P. Investigation of deep levels in Zn-doped InSe single crystals. J. Appl. Phys. 1992, 71, 2274–2279.

    Article  Google Scholar 

  58. Sánchez-Royo, J. F.; Pellicer-Porres, J.; Segura, A.; Gilliland, S.-J.; Avila, J.; Asensio, M.-C.; Safonova, O.; Izquierdo, M.; Chevy, A. Buildup and structure of the InSe/Pt interface studied by angle-resolved photoemission and X-ray absorption spectroscopy. Phys. Rev. B 2006, 73, 155308.

    Article  Google Scholar 

  59. Ning, J.; Xiao, G.; Wang, C.; Liu, B.; Zou, G.; Zou, B. Synthesis of doped zinc blende-phase InSe:M (M = Fe and Co) nanocrystals for diluted magnetic semiconductor nanomaterials. Cryst. Eng. Comm. 2013, 15, 3734–3738.

    Article  Google Scholar 

  60. Chevy, A. Improvement of growth parameters for Bridgman-grown InSe crystals. J. Cryst. Growth 1984, 67, 119–124.

    Article  Google Scholar 

  61. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

    Article  Google Scholar 

  62. Kohn W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

    Article  Google Scholar 

  63. Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys: Condens. Matter 2002, 14, 2745–2779.

    Google Scholar 

  64. Artacho, E.; Anglada, E.; Diéguez, O.; Gale, J. D.; García, A.; Junquera, J.; Martin, R. M.; Ordejón, P.; Pruneda, J. M.; Sánchez-Portal, D.; et al. The SIESTA method; developments and applicability. J. Phys: Condens. Matter 2008, 20, 064208.

    Google Scholar 

  65. Sánchez-Portal, D.; Ordejón, P.; Canadell, E. Computing the properties of materials from first principles with SIESTA. Struct. Bond. 2004, 113, 103–170.

    Article  Google Scholar 

  66. Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079.

    Article  Google Scholar 

  67. Trouiller, N.; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006.

    Article  Google Scholar 

  68. Kleinman, L.; Bylander, D. M. Efficacious form for model pseudopotentials. Phys. Rev. Lett. 1982, 48, 1425–1428.

    Article  Google Scholar 

  69. Louie, S. G.; Froyen, S.; Cohen, M. L. Nonlinear ionic pseudopotentials in spin-density-functional calculations. Phys. Rev. B 1982, 26, 1738–1742.

    Article  Google Scholar 

  70. Artacho, E.; Sánchez-Portal, D.; Ordejón, P.; García, A.; Soler, J. M. Linear-scaling ab-initio calculations for large and complex systems. Phys. Stat. Solidi B 1999, 215, 809–817.

    Article  Google Scholar 

  71. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan F. Sánchez-Royo or Juan P. Martínez-Pastor.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Royo, J.F., Muñoz-Matutano, G., Brotons-Gisbert, M. et al. Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes. Nano Res. 7, 1556–1568 (2014). https://doi.org/10.1007/s12274-014-0516-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0516-x

Keywords

Navigation