Skip to main content
Log in

Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible lithium ion batteries (LIBs) have recently attracted increasing attention as they show unique promising advantages, such as flexibility, shape diversity, and light weight. Similar to conventional LIBs, flexible LIBs with long cycle life and high-rate performance are very important for applications of high performance flexible electronics. Herein, we report a three-dimensional (3D) web-like binderfree Li4Ti5O12 (LTO) anode assembled from numerous 1D nanowires exhibiting excellent cycling performance with high capacities of 153 and 115 mA·h·g−1 after 5,000 cycles at 2 C and 20 C, respectively, and excellent rate property with a capacity of 103 mA·h·g−1 even at a very high current rate of 80 C. Surprisingly, a flexible full battery assembled from the web-like LTO nanostructure and LiMn2O4 (LMO) nanorods exhibited a high capacity of 125 mA·h·g−1 at high current rate of 20 C, and showed excellent flexibility with little performance degradation even in seriously bent states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

  2. Wang, X. F.; Liu, B.; Wang, Q. F.; Song, W. F.; Hou, X. J.; Chen, D.; Cheng. Y. -B.; Shen, G. Z. Three-dimensional hierarchical GeSe2 nanostructures for high performance flexible all-solid-state supercapacitors. Adv. Mater. 2013, 25, 1479–1486.

    Article  Google Scholar 

  3. Pushparaj, V. L.; Shaijumon, M. M.; Kumar, A.; Murugesan, S.; Ci, L.; Vajtai, R.; Ajayan, P. M. Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 13574–13577.

    Article  Google Scholar 

  4. Nishide, H.; Oyaizu, K. Toward flexible batteries. Science 2008, 319, 737–738.

    Article  Google Scholar 

  5. Wang, X. F.; Liu, B.; Liu, R.; Wang, Q. F.; Hou, X. J.; Chen, D.; Wang, R. M.; Shen, G. Z. Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. 2014, 53, 1849–1853.

    Article  Google Scholar 

  6. Wang, X. F.; Song, W. F.; Liu, B.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. High-performance organic-inorganic hybrid photodetectors based on P3HT:CdSe nanowire heterojunctions on rigid and flexible substrates. Adv. Funct. Mater. 2013, 23, 1202–1209.

    Article  Google Scholar 

  7. Hu, L. B.; Wu, H.; La Mantia, F.; Yang, Y.; Cui, Y. Thin, flexible secondary Li-ion paper batteries. ACS Nano 2010, 4, 5843–5848.

    Article  Google Scholar 

  8. Hu, L. B.; Choi, J. W.; Yang, Y.; Jeong, S.; La Mantia, F.; Cui, L. F.; Cui, Y. Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 21490–21494.

    Article  Google Scholar 

  9. Liu, B.; Wang, X. F.; Liu, B. Y.; Wang, Q. F.; Tan, D. S.; Song, W. F.; Hou, X. J.; Chen, D.; Shen, G. Z. Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes. Nano Res. 2013, 6, 525–534.

    Article  Google Scholar 

  10. Li, N.; Chen, Z. P.; Ren, W. C.; Li, F.; Cheng, H.-M. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 17360–17365.

    Article  Google Scholar 

  11. Kwon, Y. H.; Woo, S. W.; Jung, H. R.; Yu, H. K.; Kim, K.; Oh, B. H.; Kim, J. Y. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater. 2012, 24, 5192–5197.

    Article  Google Scholar 

  12. Lin, H. J.; Weng, W.; Ren, J.; Qiu, L. B.; Zhang, Z. T.; Chen, P. N.; Chen, X. L.; Deng, J.; Wang, Y. G.; Peng, H. S. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv. Mater. 2014, 26, 1217–1222.

    Article  Google Scholar 

  13. Koo, M.; Park, K. I.; Lee, S. H.; Suh, M.; Jeon, D. Y.; Choi, J. W.; Lee, K. J. Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 2012, 12, 4810–4816.

    Article  Google Scholar 

  14. Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y.; Su, J.; Zhang, H. G., et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.

    Article  Google Scholar 

  15. Choi, K.-H.; Cho, S.-J.; Kim, S.-H.; Kwon, Y. H.; Kim, J. Y; Lee, S. -Y. Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 44–52.

    Article  Google Scholar 

  16. Yu, L.; Wu, H. B.; Lou, X. W. Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv. Mater. 2013, 25, 2296–2300.

    Article  Google Scholar 

  17. Liu, S. H.; Wang, Z. Y.; Yu, C.; Wu, H. B.; Wang, G.; Dong, Q.; Qiu, J. S.; Eychmüller, A.; Lou, X. W. A flexible TiO2 (B)-based battery electrode with superior power rate and ultralong cycle life. Adv. Mater. 2013, 25, 3462–3467.

    Article  Google Scholar 

  18. Luo, J. S.; Liu, J. L.; Zeng, Z. Y.; Ng, C. F.; Ma, L. J.; Zhang, H.; Lin, J. Y.; Shen, Z. X.; Fan, H. J. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136–6143.

    Article  Google Scholar 

  19. Wang, X. F.; Xiang, Q. Y.; Liu, B.; Wang, L. J.; Luo, T.; Chen, D.; Shen, G. Z. TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries. Sci. Rep. 2013, 3, 2007.

    Google Scholar 

  20. Zhu, G. N.; Liu, H. J.; Zhuang, J. H.; Wang, C. X.; Wang, Y. G.; Xia, Y. Y. Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ. Sci. 2011, 4, 4016–4022.

    Article  Google Scholar 

  21. Zhang, G. Q.; Wu, H. B.; Hoster, H. E.; Chan-Park, M. B.; Lou, X. W. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ. Sci. 2012, 5, 9453–9456.

    Article  Google Scholar 

  22. Zhou, X. S.; Cao, A. M.; Wan, L. J.; Guo, Y. G. Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries. Nano Res. 2012, 5, 845–853.

    Article  Google Scholar 

  23. Luo, J. S.; Xia, X. H.; Luo, Y. S.; Guan, C.; Liu, J. L.; Qi, X. Y.; Ng, C. F.; Yu, T.; Zhang, H.; Fan, H. J. Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 2013, 3, 737–743.

    Article  Google Scholar 

  24. Wang, X. F.; Liu, B.; Xiang, Q. Y.; Wang, Q. F.; Hou, X. J.; Chen, D.; Shen, G. Z. Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices. ChemSusChem, 2014, 7, 308–313.

    Article  Google Scholar 

  25. Wang, Y. Q.; Gu, L.; Guo, Y. G.; Li, H.; He, X. Q.; Tsukimoto, S.; Ikuhara, Y. C.; Wan, L. J. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 2012, 134, 7874–7879.

    Article  Google Scholar 

  26. Shen, L. F.; Uchaker, E.; Zhang, X. G.; Cao, G. Z. Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv. Mater. 2012, 24, 6502–6506.

    Article  Google Scholar 

  27. Shen, L. F.; Ding, B.; Nie, P.; Cao, G. Z.; Zhang, X. G. Advanced energy-storage architectures composed of spinel lithium, metal oxide nanocrystal on carbon textiles. Adv. Energy Mater. 2013, 3, 1484–1489.

    Article  Google Scholar 

  28. Chen, S.; Xin, Y.; Zhou, Y. L.; Ma, Y. R.; Zhou, H. H.; Qi, L. M. Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy Environ. Sci. 2014, 7, 1924–1930.

    Article  Google Scholar 

  29. Kim, J. G.; Shi, D.; Park, M. S.; Jeong, G.; Heo, Y. U.; Seo, M.; Kim, Y. J.; Kin, J. H.; Dou, S. X. Controlled Ag-driven superior rate-capability of Li4Ti5O12 anode for lithium rechargeable battery. Nano Res. 2013, 6, 365–372.

    Article  Google Scholar 

  30. Ma, Y.; Ding, B.; Ji, G.; Lee, J. Y. Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li+ batteries. ACS Nano 2013, 7, 10870–10878.

    Article  Google Scholar 

  31. Zhao, L.; Hu, Y. S.; Li, H.; Wang, Z. X.; Chen, L. Q. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 2011, 23, 1385–1388.

    Article  Google Scholar 

  32. Chen, X. B.; Liu, L.; Peter, Y. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

    Article  Google Scholar 

  33. Wang, G. M.; Wang, H. Y.; Ling, Y. C.; Tang, Y. C.; Yang, X. Y.; Fitzmorris, R. C.; Wang, C. C.; Zhang, J. Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011, 11, 3026–3033.

    Article  Google Scholar 

  34. Etacheri, V.; Yourey, J. E.; Bartlett, B. M. Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power Li-ion batteries. ACS Nano 2014, 8, 1491–1499.

    Article  Google Scholar 

  35. Song, T.; Han, H.; Choi, H.; Lee, J. W.; Park, H.; Lee, S.; Park, W. I.; Kim, S.; Liu, L.; Paik, U. TiO2 nanotubes branched tree on carbon nanofiber nanostructure as an anode for high energy and power lithium ion batteries. Nano Res. 2014, 7, 491–501.

    Google Scholar 

  36. Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 2009, 9, 1045–1051.

    Article  Google Scholar 

  37. Xiao, X. L.; Lu, J.; Li, Y. D. LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res. 2010, 3, 733–737.

    Article  Google Scholar 

  38. Xiao, X. L.; Wang, L.; Wang, D. S.; He, X. M.; Peng, Q.; Li, Y. D. Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Res. 2009, 2, 923–930.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhen Shen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, B., Hou, X. et al. Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Res. 7, 1073–1082 (2014). https://doi.org/10.1007/s12274-014-0470-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0470-7

Keywords

Navigation