Skip to main content
Log in

Unidirectionally aligned diphenylalanine nanotube/microtube arrays with excellent supercapacitive performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-temperature (150–220 °C) growth leads to the formation of some peptide nanotube/microtube (NT/MT) arrays but the NTs/MTs exhibit closed ends, irreversible phase modification and eliminations of piezoelectric and hydrophilic properties. Here we demonstrate the fabrication of unidirectionally aligned and stable diphenylalanine NT/MT arrays with centimeter scale area at room temperature by utilizing an external electric field. The interactions between the applied electric field and dipolar electric field on the NTs and surface positive charges are responsible for the formation. The unidirectionally aligned MT array exhibits a supercapacitance of 1,000 μF·cm−2 at a scanning rate of 50 mV·s−1; this is much larger than the values reported previously in peptide NT/MT arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan, X. H.; Zhu, P. L.; Li, J. B. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 2010, 39, 1877–1890.

    Article  Google Scholar 

  2. Kol, N.; Adler-Abramovich, L.; Barlam, D.; Shneck, R. Z.; Gazit, E.; Rousso, I. Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett. 2005, 5, 1343–1346.

    Article  Google Scholar 

  3. Carny, O.; Shalev, D. E.; Gazit, E. Fabrication of coaxial metal nanocables using a self-assembled peptide nanotube scaffold. Nano Lett. 2006, 6, 1594–1597.

    Article  Google Scholar 

  4. Kholkin, A.; Amdusky, N.; Bdikin, I.; Gazit, E; Rosenman, G. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 2010, 4, 610–614.

    Article  Google Scholar 

  5. Bdikin, I.; Bystrov, V.; Kopyl, S.; Lopes, R. P. G.; Delgadillo, I.; Gracio, J.; Mishina, E.; Sigov, A.; Kholkin, A. L. Evidence of ferroelectricity and phase transition in pressed diphenylalanine peptide nanotubes. Appl. Phys. Lett. 2012, 100, 043702.

    Article  Google Scholar 

  6. Aida T.; Meijer, E.; Stupp, S. I. Functional supramolecular polymers. Science 2012, 335, 813–817.

    Article  Google Scholar 

  7. Ryu, J.; Park, C. B. High stability of self-assembled peptide nanowires against thermal, chemical, and proteolytic attacks. Biotechnol. Bioeng. 2010, 105, 221–230.

    Article  Google Scholar 

  8. Alder-Abramovich, L.; Reches, M.; Sedman, V. L.; Allen, S.; Tendler, S. J. B.; Gazit, E. Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological application. Langmuir 2006, 22, 1313–1320.

    Article  Google Scholar 

  9. Reches, M.; Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 2003, 300, 625–627.

    Article  Google Scholar 

  10. Yan, X. H.; Li, J. B.; Möhwald, H. Self-assembly of hexagonal peptide microtubes and their optical waveguiding. Adv. Mater. 2011, 23, 2796–2801.

    Article  Google Scholar 

  11. Beker, P.; Koren, N.; Amdursky, N.; Gazit, E.; Rosenman, G. Bioinspired peptide nanotubes as supercapacitor electrodes. J. Mater. Sci. 2010, 45, 6374–6378.

    Article  Google Scholar 

  12. Adler-Abramovich, L.; Aronov, D.; Beker, P.; Yevnin, M.; Stempler, S.; Buzhansky, L. Rosenman, G.; Gazit, E. Self-assembled arrays of peptide nanotubes by vapour deposition. Nat. Nanotechnol. 2009, 4, 849–853.

    Article  Google Scholar 

  13. Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

    Article  Google Scholar 

  14. Kumar, B.; Lee, K. Y.; Park, H. K.; Chae, S. J.; Lee, Y. H.; Kim, S. W. Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano 2011, 5, 4197–4204.

    Article  Google Scholar 

  15. Yemini, M.; Reches, M.; Rishpon, T.; Gazit, E. Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett. 2005, 5, 183–186.

    Article  Google Scholar 

  16. Reches, M.; Gazit, E. Controlling patterning of aligned self-assembled peptide nanotubes. Nat. Nanotechnol. 2006, 1, 195–200.

    Article  Google Scholar 

  17. Ryu, J.; Park, C. B. High-temperature self-assembly of peptides into vertically well-aligned nanowires by aniline vapor. Adv. Mater. 2008, 20, 3754–3758.

    Article  Google Scholar 

  18. Ryu, J.; Park, C. B. Solid-phase growth of nanostructures from amorphous peptide thin film: Effect of water activity and temperature. Chem. Mater. 2008, 20, 4284–4290.

    Article  Google Scholar 

  19. Sedman, V. L.; Adler-Abramovich, L.; Allen, S.; Gazit, E.; Tendler, S. J. B. Direct observation of the release of phenylalanine from diphenylalanine nanotubes. J. Am. Chem. Soc. 2006, 128, 6903–6908.

    Article  Google Scholar 

  20. Ryu, J.; Park, C. B. Synthesis of diphenylalanine/polyaniline core/shell conducting nanowires by peptide self-assembly. Angew. Chem. Int. Ed. 2009, 48, 4820–4823.

    Article  Google Scholar 

  21. Wang, M. J.; Du, L. J.; Xiong, S. J.; Wu, X. L.; Chu, P. K. Charged diphenylalanine nanotubes and controlled hierarchical self-assembly. ACS Nano 2011, 5, 4848–4854.

    Google Scholar 

  22. Singh, G.; Bittner, A. M.; Loscher, S.; Malinnovski, N.; Kern, K. Electrospinning of diphenylalanine nanotubes. Adv. Mater. 2008, 20, 2332–2336.

    Article  Google Scholar 

  23. Han, T. H.; Kim, J.; Park, J. S.; Park, C. B.; Ihee, H.; Kim, S. O. Liquid crystalline peptide nanowires. Adv. Mater. 2007, 19, 3924–3927.

    Article  Google Scholar 

  24. Görbizt, C. H. Microporous organic materials from hydrophobic dipeptides. Chem. Eur. J. 2007, 13, 1022–1031.

    Article  Google Scholar 

  25. Görbizt, C. H. Nanotube formation by hydrophobic dipeptides. Chem. Eur. J. 2001, 7, 5153–5159.

    Article  Google Scholar 

  26. Görbitz, C. H. The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer’s β-amyloid polypeptide. Chem. Comm. 2006, 2332–2336.

    Google Scholar 

  27. Zhu, P.; Yan, X.; Su, Y.; Yang, Y.; Li, J. Solvent-induced structural transition of self-assembled dipeptide: From organogels to microcrystals. Chem. Eur. J. 2010, 16, 3176–3183.

    Article  Google Scholar 

  28. Guo, C.; Luo, Y.; Zhou, R. H.; Wei, G. H. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes. ACS Nano 2012, 6, 3907–3918.

    Article  Google Scholar 

  29. Amaral, H. R.; Jr, Kogikoski, S.; Silva, E. R.; Souza, J. A.; Alves, W. A. Micro- and nano-sized peptideic assemblies prepared via solid-vapor approach: Morphological and spectroscopic aspects. Mater. Chem. Phys. 2012, 137, 628–636.

    Article  Google Scholar 

  30. Huang, R. L.; Qi, W.; Su, R. X.; Zhao, J.; He, Z. M. Solvent and surface controlled self-assembly of diphenylalanine peptide: From microtubes to nanofibers. Soft Matter 2011, 7, 6418–6421.

    Article  Google Scholar 

  31. Jonkheijm, P.; van der Schoot, P.; Schenning, A. P. H. J.; Meijer, E. W. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 2006, 313, 80–83.

    Article  Google Scholar 

  32. Andrade-Filho, T.; Ferreira, F. F.; Alves, W. A.; Rocha, A. R. The effects of water molecules on the electronic and structural properties of peptide nanotubes. Phys. Chem. Chem. Phys. 2013, 15, 7555–7559.

    Article  Google Scholar 

  33. Bdikin, I.; Bystrov, V.; Delgadillo, I.; Gracio, J.; Kopyl, S.; Wojtas, M.; Mishina, E.; Sigov, A.; Kholkin, A. L. Polarization switching and patterning in self-assembled peptide tubular structures. J. Appl. Phys. 2012, 111, 074104.

    Article  Google Scholar 

  34. Sun, B. Q.; Sirringhaus, H. N. Surface tension and flow driven self-assembly of ordered ZnO nanorod films for high-performance field transistors. J. Am. Chem. Soc. 2006, 128, 16231–16237.

    Article  Google Scholar 

  35. Handelman, A.; Beker, P.; Amdursky, N.; Rosenman, G. Physics and engineering of peptide supramolecular nanostructures. Phys. Chem. Chem. Phys. 2012, 14, 6391–6408.

    Article  Google Scholar 

  36. Rosenman, G.; Beker, P.; Koren, I.; Yevnin, M.; Bank-Srour, B.; Mishina, E.; Semin, S. Bioinspired peptide nanotubes: Deposition technology, basic physics and nanotechnology applications. J. Pept. Sci. 2011, 17, 75–87.

    Article  Google Scholar 

  37. Yan, X. H.; He, Q.; Wang, K. W.; Duan, L.; Cui, Y.; Li, J. B. Transition of cationic dipeptide nanotubes into vesicles and oligonucleotide delivery. Angew. Chem. Int. Ed. 2007, 46, 2431–2434.

    Article  Google Scholar 

  38. Mcmorrow, J. J.; Cress, C. D.; Affouda, C. A. Charge injection in high-k gate dielectrics of single-walled carbon nanotube thin-film transistors. ACS Nano 2012, 6, 5040–5050.

    Article  Google Scholar 

  39. Clausen, C. H.; Jensen, J.; Castillo, J.; Dimaki, M. Svendsen, W. E. Qualitative mapping of structurally different dipeptide nanotubes. Nano Lett. 2008, 81, 4066–4069.

    Article  Google Scholar 

  40. Terris, B. D.; Stern, J. E.; Rugar, D.; Mamin, H. J. Contact electrification using force microscopy. Phys. Rev. Lett. 1989, 63, 2669–2672.

    Article  Google Scholar 

  41. Jespersen, T. S.; Nygård, J. Charge trapping in carbon nanotube loops demonstrated by electrostatic force microscopy. Nano Lett. 2005, 5, 1838–1841.

    Article  Google Scholar 

  42. Staii, C.; Johnson, A. T.; Jr., Pinto, N. J. Quantitative analysis of scanning conductance microscopy. Nano Lett. 2004, 4, 859–862.

    Article  Google Scholar 

  43. Kim, J.; Jasper, W.; Barker, R. L.; Hinestroza, J. P. Application of electrostatic force microscopy on characterizing an electrically charged fiber. Fiber. Polym. 2010, 11, 775–781.

    Article  Google Scholar 

  44. He, C. Y.; Wu, X. L.; Shen, J. C.; Chu, P. K. High-efficiency electrochemical hydrogen evolution based on surface autocatalytic effect of ultrathin 3C-SiC nanocrystals. Nano Lett. 2012, 12, 1545–1548.

    Article  Google Scholar 

  45. Wu, X. L.; Xiong, S. J.; Zhu, J.; Wang, J.; Shen, J. C.; Chu, P. K. Identification of surface structures on 3C-SiC nanocrystals with hydrogen and hydroxyl bonding by photoluminescence. Nano Lett. 2009, 9, 4053–4060.

    Article  Google Scholar 

  46. Lyuksyutov, S. F.; Paramonov, P. B.; Juhl, S.; Vaia, R. A. Amplitude-modulated electrostatic nanolithography in polymers based on atomic force microscopy. Appl. Phys. Lett. 2003, 83, 4405–4407.

    Article  Google Scholar 

  47. Jespersen, T.; Nygärd, S. J. Mapping of individual carbon nanotubes in polymer/nanotube composites using electrostatic force microscopy. Appl. Phys. Lett. 2007, 90, 183108.

    Article  Google Scholar 

  48. Takagi, A.; Yamada, F.; Matsumoto, T.; Kawai, T. Electrostatic force spectroscopy on insulating surfaces: The effect of capacitive interaction. Nanotechnology 2009, 20, 365501.

    Article  Google Scholar 

  49. Baumann, M.; Stark, R. W. Dual frequency atomic force microscopy on charged surfaces. Ultramicroscopy 2010, 110, 578–581.

    Article  Google Scholar 

  50. Amdursky, N.; Beker, P.; Koren, I.; Bank-Srour, B.; Mishina, E., Semin, S.; Rasing, T.; Rosenberg, Y.; Barkay, Z.; Gazit, E.; et al. Structural transition in peptide nanotubes. Biomacromolecules 2011, 12, 1349–1354.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinglong Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wu, X., Gan, Z. et al. Unidirectionally aligned diphenylalanine nanotube/microtube arrays with excellent supercapacitive performance. Nano Res. 7, 929–937 (2014). https://doi.org/10.1007/s12274-014-0455-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0455-6

Keywords

Navigation