Skip to main content
Log in

Schottky barrier-based silicon nanowire pH sensor with live sensitivity control

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We demonstrate a pH sensor based on ultrasensitive nanosize Schottky junctions formed within bottom-up grown dopant-free arrays of assembled silicon nanowires. A new measurement concept relying on a continuous gate sweep is presented, which allows the straightforward determination of the point of maximum sensitivity of the device and allows sensing experiments to be performed in the optimum regime. Integration of devices into a portable fluidic system and an electrode isolation strategy affords a stable environment and enables long time robust FET sensing measurements in a liquid environment to be carried out. Investigations of the physical and chemical sensitivity of our devices at different pH values and a comparison with theoretical limits are also discussed. We believe that such a combination of nanofabrication and engineering advances make this Schottky barrier-powered silicon nanowire lab-on-a-chip platform suitable for efficient biodetection and even for more complex biochemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurement. IEEE T. Bio-Med. Eng. 1970, BME-17, 70–71.

    Article  Google Scholar 

  2. Bergveld, P. The impact of MOSFET-based sensors. Sensor. Actuat. 1985, 8, 109–127.

    Article  Google Scholar 

  3. Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

    Article  Google Scholar 

  4. Spijkman, M.-J.; Brondijk, J. J.; Geuns, T. C. T.; Smits, E. C. P.; Cramer, T.; Zerbetto, F.; Stoliar, P.; Biscarini, F.; Blom, P. W. M.; de Leeuw, D. M. Dual-gate organic field-effect transistors as potentiometric sensors in aqueous solution. Adv. Funct. Mater. 2010, 20, 898–905.

    Article  Google Scholar 

  5. Zumdahl, S. Chemical Principles (6th ed.); Houghton Mifflin Company; New York, 2009; pp 319–324.

    Google Scholar 

  6. Hahm, J.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54.

    Article  Google Scholar 

  7. Gao, Z. Q.; Agarwal, A.; Trigg, A. D.; Singh, N.; Fang, C.; Tung, C.-H.; Fan, Y.; Buddharaju, K. D.; Kong, J. M. Silicon nanowire arrays for label-free detection of DNA. Anal. Chem. 2007, 79, 3291–3297.

    Article  Google Scholar 

  8. Cattani-Scholz, A.; Pedone, D.; Dubey, M.; Neppl, S.; Nickel, B.; Feulner, P.; Schwartz, J.; Abstreiter, G.; Tornow, M. Organophosphonate-based PNA-functionalization of silicon nanowires for label-free DNA detection. ACS Nano 2008, 2, 1653–1660.

    Article  Google Scholar 

  9. Gao, A. R.; Lu, N.; Dai, P. F.; Li, T.; Pei, H.; Gao, X. L.; Gong, Y. B.; Wang, Y. L.; Fan, C. H. Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett. 2011, 11, 3974–3978.

    Article  Google Scholar 

  10. Kurkina, T.; Vlandas, A.; Ahmad, A.; Kern, K.; Balasubramanian, K. Label-free detection of few copies of DNA with carbon nanotube impedance biosensors. Angew. Chem. Int. Ed. 2011, 50, 3710–3714.

    Article  Google Scholar 

  11. Patolsky, F.; Zheng, G. F.; Hayden, O.; Lakadamyali, M.; Zhuang, X. W.; Lieber, C. M. Electrical detection of single viruses. PNAS 2004, 101, 14017–14022.

    Article  Google Scholar 

  12. Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.

    Article  Google Scholar 

  13. Susloparova, A.; Koppenhöfer, D.; Vu, X. T.; Weil, M.; Ingebrandt, S. Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells. Biosens. Bioelectron. 2012, 40, 50–56.

    Article  Google Scholar 

  14. Patolsky, F.; Timko, B.; Yu, G. H.; Fang, Y.; Greytak, A.; Zheng, G. F.; Lieber, C. M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 2006, 313, 1100–1104.

    Article  Google Scholar 

  15. Lambacher, A.; Vitzthum, V.; Zeitler, R.; Eickenscheidt, M.; Eversmann, B.; Thewes, R.; Fromherz, P. Identifying firing mammalian neurons in networks with high-resolution multitransistor array (MTA). Appl. Phys. A 2011, 102, 1–11.

    Article  Google Scholar 

  16. Esashi, M.; Matsuo, T. Integrated micro multi ion sensor using field effect of semiconductor. IEEE T. Bio-Med. Eng. 1978, BME-25, 184–192.

    Article  Google Scholar 

  17. Elfström, N.; Karlström, A. E.; Linnros, J. Silicon nanoribbons for electrical detection of biomolecules. Nano Lett. 2008, 8, 945–949.

    Article  Google Scholar 

  18. Vu, X. T.; Ghoshmoulick, R.; Eschermann, J. F.; Stockmann, R.; Offenhäusser, A.; Ingebrandt, S. Fabrication and application of silicon nanowire transistor arrays for biomolecular detection. Sensor. Actuat. B-Chem. 2010, 144, 354–360.

    Article  Google Scholar 

  19. Patolsky, F.; Zheng, G. F.; Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protocol. 2006, 1, 1711–1724.

    Article  Google Scholar 

  20. Balasubramanian, K.; Lee, E. J. H.; Weitz, R. T.; Burghard, M.; Kern, K. Carbon nanotube transistors—Chemical functionalization and device characterization. Phys. Stat. Solidi A 2008, 205, 633–646.

    Article  Google Scholar 

  21. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    Article  Google Scholar 

  22. Wu, Y.; Cui, Y.; Huynh, L.; Barrelet, C. J.; Bell, D. C.; Lieber, C. M. Controlled growth and structures of molecularscale silicon nanowires. Nano Lett. 2004, 4, 433–436.

    Article  Google Scholar 

  23. Nerowski, A.; Poetschke, M.; Bobeth, M.; Opitz, J.; Cuniberti, G. Dielectrophoretic growth of platinum nanowires: Concentration and temperature dependence of the growth velocity. Langmuir 2012, 28, 7498–7504.

    Article  Google Scholar 

  24. Shin, K.-S.; Pan, A.; Chui, C. O. Channel length dependent sensitivity of Schottky contacted silicon nanowire field-effect transistor sensors. Appl. Phys. Lett. 2012, 100, 123504.

    Article  Google Scholar 

  25. Pregl, S.; Weber, W. M.; Nozaki, D.; Kunstmann, J.; Baraban, L.; Opitz, J.; Mikolajick, T.; Cuniberti, G. Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output. Nano Res. 2013, 6, 381–388.

    Article  Google Scholar 

  26. Weber, W. M.; Geelhaar, L.; Graham, A. P.; Unger, E.; Duesberg, G. S.; Liebau, M.; Pamler, W.; Chèze, C.; Riechert, H.; Lugli, P.; et al. Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett. 2006, 6, 2660–2666.

    Article  Google Scholar 

  27. Heinzig, A.; Slesazeck, S.; Kreupl, F.; Mikolajick, T.; Weber, W. M. Reconfigurable silicon nanowire transistors. Nano Lett. 2012, 12, 119–124.

    Article  Google Scholar 

  28. Martin, D.; Heinzig, A.; Grube, M.; Geelhaar, L.; Mikolajick, T.; Riechert, H.; Weber, W. M. Direct probing of Schottky barriers in Si nanowire Schottky barrier field effect transistors. Phys. Rev. Lett. 2011, 107, 216807.

    Article  Google Scholar 

  29. Nozaki, D.; Kunstmann, J.; Zörgiebel, F. M.; Weber, W. M.; Mikolajick, T.; Cuniberti, G. Multiscale modeling of nanowire-based Schottky-barrier field-effect transistors for sensor applications. Nanotechnology 2011, 22, 325703.

    Article  Google Scholar 

  30. Gao, X. P. A.; Zheng, G. F.; Lieber, C. M. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 2010, 10, 547–552.

    Article  Google Scholar 

  31. Hu, Y. F.; Zhou, J.; Yeh, P.-H.; Li, Z.; Wei, T.-Y.; Wang, Z. L. Supersensitive, fast-response nanowire sensors by using Schottky contacts. Adv. Mater. 2010, 22, 3327–3332.

    Article  Google Scholar 

  32. Skucha, K.; Fan, Z. Y.; Jeon, K.; Javey, A.; Boser, B. Palladium/silicon nanowire Schottky barrier-based hydrogen sensors. Sensor. Actuat.: B-Chem. 2010, 145, 232–238.

    Article  Google Scholar 

  33. Bergveld, P. Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sensor. Actuat.: B-Chem. 2003, 88, 1–20.

    Article  Google Scholar 

  34. Knopfmacher, O.; Tarasov, A.; Fu, W. Y.; Wipf, M.; Niesen, B.; Calame, M.; Schönenberger, C. Nernst limit in dual-gated Si-nanowire FET sensors. Nano Lett. 2010, 10, 2268–2274.

    Article  Google Scholar 

  35. Spijkman, M.; Smits, E. C. P.; Cillessen, J. F. M.; Biscarini, F.; Blom, P. W. M.; de Leeuw, D. M. Beyond the Nernstlimit with dual-gate ZnO ion-sensitive field-effect transistors. Appl. Phys. Lett. 2011, 98, 043502.

    Article  Google Scholar 

  36. Bergveld, P. ISFET, Theory and Practice. IEEE Sensor Conference, October 2003. IEEE: Toronto, 2003.

    Google Scholar 

  37. Tarasov, A.; Wipf, M.; Bedner, K.; Kurz, J.; Fu, W.; Guzenko, V. A.; Knopfmacher, O.; Stoop, R. L.; Calame, M.; Schönenberger, C. True reference nanosensor realized with silicon nanowires. Langmuir 2012, 28, 9899–9905.

    Article  Google Scholar 

  38. Fan, Z. Y.; Ho, J.; Jacobson, Z.; Yerushalmi, R.; Alley, R.; Razavi, H.; Javey, A. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 2008, 8, 20–25.

    Article  Google Scholar 

  39. Ishikawa, F.; Chang, H.-K.; Ryu, K.; Chen, P.-C.; Badmaev, A.; De Arco, L. G.; Shen, G. Z.; Zhou, C. W. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 2009, 3, 73–79.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larysa Baraban.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zörgiebel, F.M., Pregl, S., Römhildt, L. et al. Schottky barrier-based silicon nanowire pH sensor with live sensitivity control. Nano Res. 7, 263–271 (2014). https://doi.org/10.1007/s12274-013-0393-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0393-8

Keywords

Navigation