Skip to main content
Log in

Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode

Nano Research Aims and scope Submit manuscript

Abstract

A carbon nanotube (CNT) sponge contains a three-dimensional conductive nanotube network, and can be used as a porous electrode for various energy devices. We present here a rational strategy to fabricate a unique CNT@polypyrrole (PPy) core-shell sponge, and demonstrate its application as a highly compressible supercapacitor electrode with high performance. A PPy layer with optimal thickness was coated uniformly on individual CNTs and inter-CNT contact points by electrochemical deposition and crosslinking of pyrrole monomers, resulting in a core-shell configuration. The PPy coating significantly improves specific capacitance of the CNT sponge to above 300 F/g, and simultaneously reinforces the porous structure to achieve better strength and fully elastic structural recovery after compression. The CNT@PPy sponge can sustain 1,000 compression cycles at a strain of 50% while maintaining a stable capacitance (> 90% of initial value). Our CNT@PPy core-shell sponges with a highly porous network structure may serve as compressible, robust electrodes for supercapacitors and many other energy devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bordjiba, T.; Mohamedi, M.; Dao, L. H. New class of carbonnanotube aerogel electrodes for electrochemical power sources. Adv. Mater. 2008, 20, 815–819.

    Article  Google Scholar 

  2. Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W. C.; Liu, B. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 2011, 21, 6494–6497.

    Article  Google Scholar 

  3. Kim, K. H.; Oh, Y.; Islam, M. F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotechnol. 2012, 7, 562–566.

    Article  Google Scholar 

  4. Li, H. B.; Gui, X. C.; Zhang, L. H.; Ji, C. Y.; Zhang, Y. C.; Sun, P. Z.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H., et al. Enhanced transport of nanoparticles across a porous nanotube sponge. Adv. Funct. Mater. 2011, 21, 3439–3445.

    Article  Google Scholar 

  5. Izadi-Najafabadi, A.; Yasuda, S.; Kobashi, K.; Yamada, T.; Futaba, D. N.; Hatori, H.; Yumura, M.; Iijima, S.; Hata, K. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv. Mater. 2010, 22, E235–E241.

    Article  Google Scholar 

  6. Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994.

    Article  Google Scholar 

  7. He, Y. M.; Chen, W. J.; Li, X. D.; Zhang, Z. X.; Fu, J. C.; Zhao, C. H.; Xie, E. Q. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174–182.

    Article  Google Scholar 

  8. Choi, B. G.; Yang, M. H.; Hong, W. H.; Choi, J. W.; Huh, Y. S. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 2012, 6, 4020–4028.

    Article  Google Scholar 

  9. Li, X. M.; Zhao, T. S.; Wang, K. L.; Yang, Y.; Wei, J. Q.; Kang, F. Y.; Wu, D. H.; Zhu, H. W. Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir 2011, 27, 12164–12171.

    Article  Google Scholar 

  10. Meng, Y. N.; Zhao, Y.; Hu, C. G.; Cheng, H. H.; Hu, Y.; Zhang, Z. P.; Shi, G. Q.; Qu, L. T. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 2013, 25, 2326–2331.

    Article  Google Scholar 

  11. Qian, X. F.; Lv, Y. Y.; Li, W.; Xia, Y. Y.; Zhao, D. Y. Multiwall carbon nanotube@mesoporous carbon with core-shell configuration: A well-designed composite-structure toward electrochemical capacitor application. J. Mater. Chem. 2011, 21, 13025–13031.

    Article  Google Scholar 

  12. Jha, N.; Ramesh, P.; Bekyarova, E.; Itkis, M. E.; Haddon, R. C. High energy density supercapacitor based on a hybrid carbon nanotube-reduced graphite oxide architecture. Adv. Energy Mater. 2012, 2, 438–444.

    Article  Google Scholar 

  13. Liu, C. G.; Yu, Z. N.; Neff, D.; Zhamu, A.; Jang, B. Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 2010, 10, 4863–4868.

    Article  Google Scholar 

  14. Yu, G. H.; Hu, L. B.; Liu, N.; Wang, H. L.; Vosgueritchian, M.; Yang, Y.; Cui, Y.; Bao, Z. N. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 2011, 11, 4438–4442.

    Article  Google Scholar 

  15. Kim, T. Y.; Lee, H. W.; Stoller, M.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S.; Suh, K. S. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. ACS Nano 2011, 5, 436–442.

    Article  Google Scholar 

  16. Yu, C. J.; Masarapu, C.; Rong, J. P.; Wei, B. Q.; Jiang, H. Q. Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Adv. Mater. 2009, 21, 4793–4797.

    Article  Google Scholar 

  17. Niu, Z. Q.; Dong, H. B.; Zhu, B. W.; Li, J. Z.; Hng, H. H.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 2013, 25, 1058–1064.

    Article  Google Scholar 

  18. El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

    Article  Google Scholar 

  19. Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang, Y.; Duan, X. F. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013, 7, 4042–4049.

    Article  Google Scholar 

  20. Zhao, Y.; Liu, J.; Hu, Y.; Cheng, H. H.; Hu, C. G.; Jiang, C. C.; Jiang, L.; Cao, A. Y.; Qu, L. T. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv. Mater. 2013, 25, 591–595.

    Article  Google Scholar 

  21. Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617–621.

    Article  Google Scholar 

  22. Li, P. X.; Kong, C. Y.; Shang, Y. Y.; Shi, E. Z.; Yu, Y. T.; Qian, W. Z.; Wei, F.; Wei, J. Q.; Wang, K. L.; Zhu, H. W., et al. Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes. Nanoscale 2013, 5, 8472–8479.

    Article  Google Scholar 

  23. Feng, W.; Bai, X. D.; Lian, Y. Q.; Liang, J.; Wang, X. G.; Yoshino, K. Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon 2003, 41, 1551–1557.

    Article  Google Scholar 

  24. Lota, K.; Khomenko, V.; Frackowiak, E. Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. J. Phys. Chem. Solids 2004, 65, 295–301.

    Article  Google Scholar 

  25. Hu, Y.; Zhao, Y.; Li, Y.; Li, H.; Shao, H. B.; Qu, L. T. Defective super-long carbon nanotubes and polypyrrole composite for high-performance supercapacitor electrodes. Electrochimi. Acta 2012, 66, 279–286.

    Article  Google Scholar 

  26. Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 2013, 6, 1185–1191.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anyuan Cao or Dehai Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P., Shi, E., Yang, Y. et al. Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode. Nano Res. 7, 209–218 (2014). https://doi.org/10.1007/s12274-013-0388-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0388-5

Keywords

Navigation