Skip to main content
Log in

Coulomb drag between in-plane graphene double ribbons and the impact of the dielectric constant

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

With recent developments in the search for novel device ideas, understanding electron-electron interaction in low dimensional systems is of particular interest. Coulomb drag measurements can provide critical insights in this context. In this article, we present a novel planar graphene double ribbon structure that shows for the first time that Coulomb drag is observable in two adjacent monolayer ribbons in the same plane at room temperature. Moreover, our planar devices enable experimentally study of the impact of the dielectric constant on Coulomb drag which is difficult to explore in the typically used double layer graphene structures. Our experimental findings indicate in particular that the drag resistance is proportional to the dielectric constant (ε) and does not, as recently reported, show an increasing trend of interaction strength for small ε-values. In fact, we find that the drag resistance follows approximately an ε 1.2-dependence. The exponent of “1.2” is consistent with the theory considering the carrier concentration in our samples, and positions our results in between the weak and strong coupling limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eisenstein, J. P.; Macdonald, A. H. Bose-Einstein condensation of excitons in bilayer electron systems. Nature 2004, 432, 691–694.

    Article  PubMed  CAS  ADS  Google Scholar 

  2. Datta, S.; Melloch, M.; Gunshor, R. Possibility of an excitonic ground state in quantum wells. Phys. Rev. B 1985, 32, 2607–2609.

    Article  CAS  ADS  Google Scholar 

  3. Shevchenko, S. Phase diagram of systems with pairing of spatially separated electrons and holes. Phys. Rev. Lett. 1994, 72, 3242–3245.

    Article  PubMed  CAS  ADS  Google Scholar 

  4. Shevchenko, S. Quantized vortices in systems with pairing of spatially separated electrons and holes. Low Temp. Phys. 1997, 23, 741.

    Article  ADS  Google Scholar 

  5. Yoon, Y.; Tiemann, L.; Schmult, S.; Dietsche, W.; von Klitzing, K. Interlayer tunneling in counterflow experiments on the excitonic condensate in quantum hall bilayers. Phys. Rev. Lett. 2010, 104, 116802.

    Article  PubMed  CAS  ADS  Google Scholar 

  6. Tutuc, E.; Shayegan, M. Charge neutral counterflow transport at filling factor 1 in GaAs hole bilayers. Solid State Commun. 2007, 144, 405–408.

    Article  CAS  ADS  Google Scholar 

  7. Min, H.; Bistritzer, R.; Su, J.; MacDonald, A. Room-temperature superfluidity in graphene bilayers. Phys. Rev. B. 2008, 78, 121401–121404.

    Article  ADS  Google Scholar 

  8. Su, J. J.; MacDonald, A. H. How to make a bilayer exciton condensate flow. Nat. Phys. 2008, 4, 799–802.

    Article  CAS  Google Scholar 

  9. Min, H.; Bistritzer, R.; Su, J.; MacDonald, A. Room-temperature superfluidity in graphene bilayers. Phys. Rev. B 2008, 78, 121401.

    Article  ADS  Google Scholar 

  10. Gramila, T.; Eisenstein, J.; MacDonald, A.; Pfeiffer, L.; West, K. Mutual friction between parallel two-dimensional electron systems. Phys. Rev. Lett. 1991, 66, 1216–1219.

    Article  PubMed  CAS  ADS  Google Scholar 

  11. Sivan, U.; Solomon, P.; Shtrikman, H. Coupled electron-hole transport. Phys. Rev. Lett. 1992, 68, 1196–1199.

    Article  PubMed  ADS  Google Scholar 

  12. Solomon, P.; Price, P.; Frank, D.; La Tulipe, D. New phenomena in coupled transport between 2D and 3D electron-gas layers. Phys. Rev. Lett. 1989, 63, 2508–2511.

    Article  PubMed  CAS  ADS  Google Scholar 

  13. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  PubMed  CAS  ADS  Google Scholar 

  14. Gorbachev, R. V.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Tudorovskiy, T.; Grigorieva, I. V.; MacDonald, A. H.; Morozov, S. V.; Watanabe, K.; Taniguchi, T. et al. Strong Coulomb drag and broken symmetry in double-layer graphene. Nat. Phys. 2012, 8, 896–901.

    Article  CAS  Google Scholar 

  15. Kim, S.; Tutuc, E. Coulomb drag and magnetotransport in graphene double layers. Solid State Commun. 2012, 152, 1283–1288.

    Article  CAS  ADS  Google Scholar 

  16. Kim, S.; Dillen, I. Jo. D.; Ferrer, D.; Fallahazad, B.; Yao, Z.; Banerjee, S.; Tutuc, E. Direct measurement of the fermi energy in graphene using a double-layer heterostructure. Phys. Rev. Lett. 2012, 108, 116404–116408.

    Article  PubMed  ADS  Google Scholar 

  17. Kim, S.; Jo, I.; Nah, J.; Yao, Z.; Banerjee, S.; Tutuc, E. Coulomb drag of massless fermions in graphene. Phys. Rev. B 2011, 83, 161401–161404.

    Article  ADS  Google Scholar 

  18. Tse, W. K.; Hu, B.; Das Sarma, S. Theory of Coulomb drag in graphene. Phys. Rev. B 2007, 76, 081401–081404.

    Article  ADS  Google Scholar 

  19. Hwang, E.; Sensarma, R.; Das Sarma, S. Coulomb drag in monolayer and bilayer graphene Phys. Rev. B 2011, 84, 245441–245449.

    Article  ADS  Google Scholar 

  20. Katsnelson, M. Coulomb drag in graphene single layers separated by a thin spacer. Phys. Rev. B 2011, 84, 041407–041409.

    Article  ADS  Google Scholar 

  21. Peres, N. M. R.; Lopes dos Santos, J. M. B.; Castro Neto, A. H. Coulomb drag and high resistivity behavior in double layer graphene. Europhys. Lett. 2011, 95, 18001.

    Article  ADS  Google Scholar 

  22. Carrega, M.; Tudorovskiy, T.; Katsnelson, M. I.; Polini, M. Theory of Coulomb drag for massless Dirac fermions. New J. Phys. 2012, 14, 063033.

    Article  ADS  Google Scholar 

  23. Bernstein, K.; Cavin, R. K.; Porod, W.; Seabaugh, A.; Welser, J. Device and architecture outlook for beyond CMOS switches. Proc. IEEE. 2010, 98, 2169–2184.

    Article  Google Scholar 

  24. Chen, C. T.; Low, T.; Chiu, H. Y.; Zhu, W. Graphene-sidegate engineering. IEEE Electron Device Lett. 2012, 33, 330–332.

    Article  CAS  ADS  Google Scholar 

  25. Hähnlein, B.; Händel, B.; Pezoldt, J.; Töpfer, H.; Granzner, R.; Schwierz, F. Side-gate graphene field-effect transistors with high transconductance. Appl. Phys. Lett. 2012, 101, 093504.

    Article  ADS  Google Scholar 

  26. Li, X.; Wu, X.; Sprinkle, M.; Ming, F.; Ruan, M.; Hu, Y.; Berger, C.; de Heer, W. Top- and side-gated epitaxial graphene field effect transistors. Phys. Status Solidi A. 2010, 207, 286–290.

    Article  CAS  ADS  Google Scholar 

  27. Tian, J. F.; Jauregui, L.; Lopez, G.; Cao, H.; Chen, Y. P. Ambipolar graphene field effect transistors by local metal side gates. Appl. Phys. Lett. 2010, 96, 263110.

    Article  ADS  Google Scholar 

  28. Molitor, F.; Jacobsen, A.; Stampfer, C.; Guttinger, J.; Ihn, T.; Ensslin, K. Transport gap in side-gated graphene constrictions. Phys. Rev. B 2009, 79, 075426.

    Article  ADS  Google Scholar 

  29. Molitor, F.; Guttinger, J.; Stampfer, C.; Graf, D.; Ihn, T.; Ensslin, K. Local gating of a graphene Hall bar by graphene side gates. Phys. Rev. B 2007, 76, 245426–245430.

    Article  ADS  Google Scholar 

  30. Chen, H. Y.; Appenzeller, J. Graphene-based frequency tripler. Nano lett. 2012, 12, 2067–2070.

    Article  PubMed  CAS  ADS  Google Scholar 

  31. Chen, H. Y.; Appenzeller, J. Complementary-type graphene inverters operating at room-temperature Device Res. Conf. 2011, 33–34.

    Google Scholar 

  32. Chen H. Y.; Appenzeller, J. On the voltage gain of complementary graphene voltage amplifiers with optimized doping. IEEE Electron Device Lett. 2012, 33, 1462–1464.

    Article  CAS  ADS  Google Scholar 

  33. The voltage detection unit has a very large impedance (10 Mohm) to ground and hence the drag channel (< 150 kohm) can be considered floating

  34. Yamamoto, M.; Stopa, M.; Tokura, Y.; Hirayama, Y.; Tarucha, S. Negative Coulomb drag in a one-dimensional wire. Science 2006, 313, 204–207.

    Article  PubMed  CAS  ADS  Google Scholar 

  35. Since our C bg is quite small (90 nm SiO2), contributions from the quantum capacitance can be ignored for carrier concentrations > 1011 cm-2.

  36. Sui, Y.; Low, T.; Lundstrom, M.; Appenzeller, J. Signatures of disorder in the minimum conductivity of graphene. Nano Lett. 2011, 11, 1319–1322.

    Article  PubMed  CAS  ADS  Google Scholar 

  37. Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; von Klitzing, K.; Yacoby, A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 2007, 4, 144–148.

    Article  Google Scholar 

  38. Adam, S.; Hwang, E. H.; Galitski, V. M.; Das Sarma, S. A self-consistent theory for graphene transport. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 18392–18397.

    Article  PubMed  CAS  PubMed Central  ADS  Google Scholar 

  39. Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. Charged-impurity scattering in graphene. Nat. Phys. 2008, 4, 377–381.

    Article  CAS  Google Scholar 

  40. Xu, G.; Torres, C. M.; Tang, J.; Bai, J.; Song, E. B.; Huang, Y.; Duan, X.; Zhang, Y.; Wang, K. L. Edge effect on resistance scaling rules in graphene nanostructures. Nano Lett. 2011, 11, 1082–1086.

    Article  PubMed  CAS  ADS  Google Scholar 

  41. Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954–17961.

    Article  CAS  ADS  Google Scholar 

  42. Lee, E. J. H.; Balasubramanian, K.; Weitz, R. T.; Burghard, M.; Kern, K. Nature contact and edge effects in graphene devices. Nat. Nanotechnol. 2008, 3, 486–490.

    Article  PubMed  CAS  ADS  Google Scholar 

  43. Cresti, A.; Roche, S. Range and correlation effects in edge disordered graphene nanoribbons. New J. Phys. 2009, 11, 095004.

    Article  ADS  Google Scholar 

  44. Yoon, Y.; Guo, J. Effect of edge roughness in graphene nanoribbon transistors. Appl. Phys. Lett. 2007, 91, 073103.

    Article  ADS  Google Scholar 

  45. In our quantitative comparison, a minor difference in temperature (295 K in this work and 240 K in Ref. [14]) has not been included.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyan Chen or Joerg Appenzeller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Appenzeller, J. Coulomb drag between in-plane graphene double ribbons and the impact of the dielectric constant. Nano Res. 6, 897–905 (2013). https://doi.org/10.1007/s12274-013-0366-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0366-y

Keywords

Navigation