Skip to main content
Log in

A novel strategy for improving upconversion luminescence of NaYF4:Yb, Er nanocrystals by coupling with hybrids of silver plasmon nanostructures and poly(methyl methacrylate) photonic crystals

  • Resarch Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The coupling of upconversion nanophosphors (UCNPs) with the surface plasmonic resonance (SPR) of noble metals is a promising way to improve luminescent efficiency of UCNPs; however, it is still a challenge to achieve stable, reproducible and effective upconversion luminescence (UCL) enhancement through such coupling. In this work, we present a novel strategy to improve UCL of NaYF4:Yb3+,Er3+ UCNPs, by combining the near-field coupling of SPR of silver and the far-field coupling of poly(methyl methacrylate) (PMMA) opal photonic crystals (OPCs) with the UCNPs. In order to control the effective interaction distance between the UCNPs and the SPR, a porous silver film consisting of randomly distributed silver nanoparticles (NPs) (> 100 nm) was prepared which demonstrated strong SPR over a broad wavelength range, and its coupling to the UCNPs was found to be much stronger than that of a dense film. In the far-field coupling of OPCs, the photonic stop band (PSB) of the PMMA OPCs was tuned to 980 nm, matching exactly the excitation light. By modulating the particle size of the UCNPs, and the direction and excitation power of the incident light, a maximum enhancement of 60-fold was observed, which is an important advance for metal-induced UCL enhancement systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174.

    Article  CAS  Google Scholar 

  2. Danger, T.; Koetke, J.; Brede, R.; Heumann, E.; Huber, G.; Chai, B. H. T. Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature. J. Appl. Phys. 1994, 76, 1413–1422.

    Article  CAS  Google Scholar 

  3. Huang, X. Y.; Han, S. Y.; Huang, W.; Liu, X. G. Enhancing solar cell efficiency: The search for luminescent materials as spectral converters. Chem. Soc. Rev. 2013, 42, 173–201.

    Article  CAS  Google Scholar 

  4. Su, L. T.; Karuturi, S. K.; Luo, J. S.; Liu, L. J.; Liu, X. F.; Guo, J.; Sum, T. C.; Deng, R. R.; Fan, H. J.; Liu, X. G. et al. Photon upconversion in hetero-nanostructured photoanodes for enhanced near-infrared light harvesting. Adv. Mater. 2013, 25, 1603–1607.

    Article  CAS  Google Scholar 

  5. Aarts, L.; van der Ende, B. M.; Meijerink, A. Downconversion for solar cells in NaYF4:Er,Yb. J. Appl. Phys. 2009, 106, 023522.

    Article  Google Scholar 

  6. Yu, X. F.; Li, Min.; Xie, M. Y.; Chen, L. D.; Li, Y.; Wang, Q. Q. Dopant-controlled synthesis of water-soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging. Nano Res. 2010, 3, 51–60.

    Article  CAS  Google Scholar 

  7. Tu, D.; Liu, L. Q.; Ju, Q.; Liu, Y. S.; Zhu, H. M.; Li, R. F.; Chen, X. Y. Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 6306–6310.

    Article  CAS  Google Scholar 

  8. Esterowitz, L.; Noonan, J.; Bahler. J. Erratum: Enhancement in a Ho3+-Yb3+ quantum counter by energy transfer. Appl. Phys. Lett. 1967, 11, 72.

    Article  Google Scholar 

  9. Rapaport, A.; Milliez, J.; Bass, M.; Cassanho, A.; Jenssen, J. Review of the properties of up-conversion phosphors for new emissive displays. J. Disp. Technol. 2006, 2, 68–78.

    Article  CAS  Google Scholar 

  10. Boyer, J. C.; van Veggel, F. C. J. M. Absolute quantum yield measurements of colloidal NaYF4:Er3+,Yb3+ upconverting nanoparticles. Nanoscale 2010, 2, 1417–1419.

    Article  CAS  Google Scholar 

  11. Yang, T. S.; Sun, Y.; Liu, Q.; Feng, W.; Yang, P. Y.; Li, F. Y. Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species. Biomaterials 2012, 33, 3733–3742.

    Article  CAS  Google Scholar 

  12. Yi, G. S.; Chow, G. M. Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 2007, 19, 341–343.

    Article  CAS  Google Scholar 

  13. Wang, F.; Deng, R. R.; Wang, J.; Wang, Q. X.; Han, Y.; Zhu, H. M.; Chen, X. Y.; Liu, X. G. Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 2011, 10, 968–973.

    Article  CAS  Google Scholar 

  14. Ming, T.; Chen, H. J.; Jiang, R. B.; Li, Q.; Wang, J. F. Plasmon-controlled fluorescence: Beyond the intensity enhancement. J. Phys. Chem. Lett. 2012, 3, 191–202.

    Article  CAS  Google Scholar 

  15. Viste, P.; Plain, J.; Jaffiol, R.; Vial, A.; Adam, P. M.; Royer, P. Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources. ACS nano 2010, 4, 759–764.

    Article  CAS  Google Scholar 

  16. Bharill, S.; Chen, C. L.; Stevens, B.; Kaur, J.; Smilansky, Z.; Mandecki, W.; Gryczynski, I.; Gryczynski, Z.; Cooperman, B. S.; Goldman, Y. E. Enhancement of single-molecule fluorescence signals by colloidal silver nanoparticles in studies of protein translation. ACS nano 2011, 5, 399–407.

    Article  CAS  Google Scholar 

  17. Schietinger, S.; Aichele, T.; Wang, H. Q.; Nann, T.; Benson, O. Plasmon-enhanced upconversion in single NaYF4: Yb3+/Er3+ codoped nanocrystals. Nano Lett 2010, 10, 134–138.

    Article  CAS  Google Scholar 

  18. Zhang, F.; Braun, G. B.; Shi, Y. F.; Zhang, Y. C.; Sun, X. H.; Reich, N. O.; Zhao, D. Y.; Stucky, G. Fabrication of Ag@SiO2@Y2O3:Er nanostructures for bioimaging: Tuning of the upconversion fluorescence with silver nanoparticles. J. Am. Chem. Soc. 2010, 132, 2850–2851.

    Article  CAS  Google Scholar 

  19. Zhang, H.; Li, Y. J.; Ivanov, I. A.; Qu, Y. Q.; Huang, Y.; Duan, X. F. Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. 2010, 49, 2865–2868.

    Article  CAS  Google Scholar 

  20. Liu, N.; Qin, W. P.; Qin, G. S.; Jiang, T.; Zhao, D. Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures. Chem. Commun. 2011, 47, 7671–7673.

    Article  CAS  Google Scholar 

  21. Priyam, A.; Idris, N. M.; Zhang, Y. Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion fluorescence and darkfield imaging. J. Mater. Chem. 2012, 22, 960–965.

    Article  CAS  Google Scholar 

  22. Zhang, W. H.; Ding, F.; Chou, S. Y. Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas. Adv. Mater. 2012, 24, OP236–OP241.

    Article  CAS  Google Scholar 

  23. Saboktakin, M.; Ye, X. C.; Oh, S. J.; Hong, S. H.; Fafarman, A. T.; Chettiar, U. K.; Engheta, N.; Murray, C. B.; Kagan, C. R. Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation. ACS nano 2012, 6, 8758–8766.

    Article  CAS  Google Scholar 

  24. Fujii, M.; Nakano, T.; Imakita, K.; Hayashi, S. Upconversion luminescence of Er and Yb codoped NaYF4 nanoparticles with metal shells. J. Phys. Chem. C 2013, 117, 1113–1120.

    Article  CAS  Google Scholar 

  25. Paudel, H. P.; Zhong, L. L.; Bayat, K.; Baroughi, M. F.; Smith, S.; Lin, C. K.; Jiang, C. Y.; Berry, M. T.; May, P. S. Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces. J. Phys. Chem. C 2011, 115, 19028–19036.

    Article  CAS  Google Scholar 

  26. Xu, W.; Xu, S.; Zhu, Y. S.; Liu, T.; Bai, X.; Dong, B.; Xu, L.; Song, H. W. Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film. Nanoscale 2012, 4, 6971–6973.

    Article  CAS  Google Scholar 

  27. Evanoff Jr, D. D.; Chumanov, G. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 2005, 6, 1221–1231.

    Article  CAS  Google Scholar 

  28. Ogawa, S.; Imada, M.; Yoshimoto, S.; Okano, M.; Noda, S. Control of light emission by 3D photonic crystals. Science 2004, 305, 227–229.

    Article  CAS  Google Scholar 

  29. Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N.; Meade, R. D. Photonic Crystals Molding the Flow of Light; Princeton University Press: Princeton, 2008.

    Google Scholar 

  30. Wang, W.; Song, H. W.; Bai, X.; Liu, Q.; Zhu, Y. S. Modified spontaneous emissions of europium complex in weak PMMA opals. Phys. Chem. Chem. Phys. 2011, 13, 18023–18030.

    Article  CAS  Google Scholar 

  31. Tao, C. A.; Zhu, W.; An, Q.; Yang, H. W.; Li, W. N.; Lin, C. X.; Yang, F. Z.; Li, G. T. Coupling of nanoparticle plasmons with colloidal photonic crystals as a new strategy to efficiently enhance fluorescence. J. Phys. Chem. C 2011, 115, 20053–20060.

    Article  CAS  Google Scholar 

  32. Li, Z. Q.; Wang, L. M.; Wang, Z. Y.; Liu, X. H.; Xiong, Y. J. Modification of NaYF4:Yb, Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions. J. Phys. Chem. C 2011, 115, 3291–3296.

    Article  CAS  Google Scholar 

  33. Wu, Y.; Shen, X.; Dai, S. X.; Xu, Y. S.; Chen, F. F.; Lin, C. G.; Xu, T. F.; Nie, Q. H. Silver nanoparticles enhanced upconversion luminescence in Er3+/Yb3+ codoped bismuth-germanate glasses. J. Phys. Chem. C 2011, 115, 25040–25045.

    Article  CAS  Google Scholar 

  34. Li, Z. Q.; Zhang, Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb,Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 2008, 19, 345606.

    Article  Google Scholar 

  35. Wiley, B.; Sun, Y. G.; Xia, Y. N. Synthesis of silver nanostructures with controlled shapes and properties. Acc. Chem. Res. 2007, 40, 1067–1076.

    Article  CAS  Google Scholar 

  36. Kinnan, M. K.; Chumanov, G. Plasmon coupling in two-dimensional arrays of silver nanoparticles: II. effect of the particle size and interparticle distance. J. Phys. Chem. C 2010, 114, 7496–7501.

    Article  CAS  Google Scholar 

  37. Wang, Y.; Tu, L. P.; Zhao, J. W.; Sun, Y. J.; Kong, X. G.; Zhang, H. Upconversion luminescence of β-NaYF4:Yb3+, Er3+@β-NaYF4 core/shell nanoparticles: Excitation power density and surface dependence. J. Phys. Chem. C 2009, 113, 7164–7169.

    Article  CAS  Google Scholar 

  38. Li, D.; Dong, B.; Bai, X.; Wang, Y.; Song, H. W. Influence of the TGA modification on upconversion luminescence of hexagonal-phase NaYF4:Yb3+,Er3+ nanoparticles. J. Phys. Chem. C 2010, 114, 8219–8226.

    Article  CAS  Google Scholar 

  39. Bai, X.; Song, H. W.; Pan, G. H.; Lei, Y. Q.; Wang, T.; Ren, X. G.; Lu, S. Z.; Dong, B.; Dai, Q. L.; Fan, L. B. Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline Yttria: Saturation and thermal effects. J. Phys. Chem. C 2007, 111, 13611–13617.

    Article  CAS  Google Scholar 

  40. Pollnau, M.; Gamelin, D. R.; Luthi, S. R.; Gudel, H. U. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 2000, 61, 3337–3346.

    Article  CAS  Google Scholar 

  41. Dai, Q. L.; Song, H. W.; Ren, X. G.; Lu, S. Z.; Pan, G. H.; Bai, X.; Dong, B.; Qin, R. F.; Qu, X. S.; Zhang, H. Structure and upconversion luminescence of hydrothermal PbWO4:Er3+,Yb3+ powders. J. Phys. Chem. C 2008, 112, 19694–19698.

    Article  CAS  Google Scholar 

  42. Fischer, J.; Bocchio, N.; Unger, A.; Butt, H. J.; Koynov, K.; Kreiter, M. Near-field-mediated enhancement of two-photon-induced fluorescence on plasmonic nanostructures. J. Phys. Chem. C 2010, 114, 20968–20973.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Song.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Zhu, Y., Chen, X. et al. A novel strategy for improving upconversion luminescence of NaYF4:Yb, Er nanocrystals by coupling with hybrids of silver plasmon nanostructures and poly(methyl methacrylate) photonic crystals. Nano Res. 6, 795–807 (2013). https://doi.org/10.1007/s12274-013-0358-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0358-y

Keywords

Navigation