Skip to main content
Log in

Robust reduction of graphene fluoride using an electrostatically biased scanning probe

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report a novel and easily accessible method to chemically reduce graphene fluoride (GF) sheets with nanoscopic precision using high electrostatic fields generated between an atomic force microscope (AFM) tip and the GF substrate. Reduction of fluorine by the electric field produces graphene nanoribbons (GNR) with a width of 105-1,800 nm with sheet resistivity drastically decreased from >1 TΩ·sq.−1 (GF) down to 46 kΩ·sq.−1 (GNR). Fluorine reduction also changes the topography, friction, and work function of the GF. Kelvin probe force microscopy measurements indicate that the work function of GF is 180–280 meV greater than that of graphene. The reduction process was optimized by varying the AFM probe velocity between 1.2 μm·s−1 and 12 μm·s−1 and the bias voltage applied to the sample between −8 and −12 V. The electrostatic field required to remove fluorine from carbon is ∼1.6 V·nm−1. Reduction of the fluorine may be due to the softening of the C-F bond in this intense field or to the accumulation and hydrolysis of adventitious water into a meniscus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.

    Article  CAS  Google Scholar 

  2. Wei, Z. Q.; Wang, D. B.; Kim, S.; Kim, S.-Y.; Hu, Y.; Yakes, M. K.; Laracuente, A. R.; Dai, Z. T.; Marder, S. R.; Berger, C.; et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 2010, 328, 1373–1376.

    Article  CAS  Google Scholar 

  3. Robinson, J. T.; Burgess, J. S.; Junkermeier, C. E.; Badescu, S. C.; Reinecke, T. L.; Perkins, F. K.; Zalalutdniov, M. K.; Baldwin, J. W.; Culbertson, J. C.; Sheehan, P. E.; Snow, E. S. Properties of fluorinated graphene films. Nano Lett. 2010, 10, 3001–3005.

    Article  CAS  Google Scholar 

  4. Nair, R. R.; Ren, W.; Jalil, R.; Riaz, I.; Kravets, V. G.; Britnell, L.; Blake, P.; Schedin, F.; Mayorov, A. S.; Yuan, S. J.; et al. Fluorographene: A two-dimensional counterpart of teflon. Small 2010, 6, 2877–2884.

    Article  CAS  Google Scholar 

  5. Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y. J.; Chhowalla, M.; Shenoy, V. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2010, 2, 581–587.

    Article  CAS  Google Scholar 

  6. Lee, W.-H.; Suk, J.-W.; Chou, H.; Lee, J.; Hao, Y. F.; Wu, Y. P.; Piner, R.; Akinwande, D.; Kim, K. S.; Rouff, R. S. Selective area fluorination of graphene with fluoropolymer and laser irradiation. Nano Lett. 2012, 12, 2374–2378.

    Article  CAS  Google Scholar 

  7. Sofo, J. O.; Suarez, A. M.; Usaj, G.; Cornaglia, P. S.; Hernandez-Nieves, A.; Balseiro, C. A. Electrical control of the chemical bonding of fluorine on graphene. Phys. Rev. B 2011, 83, 081411.

    Article  Google Scholar 

  8. Jeon, K.-J.; Lee, Z.; Pollak, E.; Moreschini, L.; Bostwick, A.; Park, C.-M.; Mendelsberg, R.; Radmilovic, V.; Kostecki, R.; Richardson, T. J.; et al. Fluorographene: A wide bandgap semiconductor with ultraviolet luminescence. ACS Nano 2011, 5, 1042–1046.

    Article  CAS  Google Scholar 

  9. Lee, W.-K.; Robinson, J. T.; Gunlycke, D.; Stine, R. R.; Tamanaha, C. R.; King, W. P.; Sheehan, P. E. Chemically isolated graphene nanoribbons reversibly formed in fluorographene using polymer nanowire masks. Nano Lett. 2011, 11, 5461–5464.

    Article  CAS  Google Scholar 

  10. Withers, F.; Bointon, T. H.; Dubois, M.; Russo, S.; Craciun, M. F. Nanopatterning of fluorinated graphene by electron beam irradiation. Nano Lett. 2011, 11, 3912–3916.

    Article  CAS  Google Scholar 

  11. Giesbers, A. J. M.; Zeitler, U.; Neubeck, S.; Freitag, F.; Novoselov, K. S.; Maan, J. C. Nanolithography and manipulation of graphene using an atomic force microscope. Solid State Commun. 2008, 147, 366–369.

    Article  CAS  Google Scholar 

  12. Masubuchi, S.; Arai, M.; Machida, T. Atomic force microscopy based tunable local anodic oxidation of graphene. Nano Lett. 2011, 11, 4542–4546.

    Article  CAS  Google Scholar 

  13. Weng, L.; Zhang, L.; Chen, Y. P.; Rokhinson, L. P. Atomic force microscopy local oxidation of graphene. Appl. Phys. Lett. 2008, 93, 112102.

    Article  Google Scholar 

  14. Byun, I. S.; Yoon, D.; Choi, J. S.; Hwang, I.; Lee, D. H.; Lee, M. J.; Kawai, T.; Son, Y.-W.; Jia, Q. X.; Cheong, H.; Park, B. H. Nanoscale lithography on monolayer graphene using hydrogenation and oxidation. ACS Nano 2011, 5, 6417–6424.

    Article  CAS  Google Scholar 

  15. Lyuksyutov, S. F.; Vaia, R. A.; Paramonov, P. B.; Juhl, S.; Waterhouse, L.; Ralich, R. M.; Sigalov, G.; Sancaktar, E. Electrostatic nanolithography in polymers using atomic force microscopy. Nat. Mater. 2003, 2, 468–472.

    Article  CAS  Google Scholar 

  16. Juhl, S.; Phillips, D.; Vaia, R. A.; Lyuksyutov, S. F.; Paramonov, P. B. Precise formation of nanoscopic dots on polystyrene film using z-lift electrostatic lithography. Appl. Phys. Lett. 2004, 85, 3836–3838.

    Article  CAS  Google Scholar 

  17. Lafkioti, M.; Krauss, B.; Lohmann, T.; Zschieschang, U.; Klauk, H.; von Klitzing, K.; Smet, J. H. Graphene on a hydrophobic substrate: Doping reduction and hysteresis suppression under ambient conditions. Nano Lett. 2010, 10, 1149–1153.

    Article  CAS  Google Scholar 

  18. Tramšek, M.; Žemva, B. Synthesis, properties and chemistry of Xenon(II) fluoride. Acta Chim. Slov. 2006, 53, 105–116.

    Google Scholar 

  19. Kwon, S.; Ko, J. H.; Jeon, K. H.; Kim, Y. H.; Park, J. Enhanced nanoscale friction on fluorinated graphene. Nano Lett. 2012, 12, 6043–6048.

    Article  CAS  Google Scholar 

  20. Ko, J.-H.; Kwon, S.; Byun, I.-S.; Choi, J. S.; Park, B. H.; Kim, Y.-H.; Park J. Y. Nanotribological properties of fluorinated, hydrogeneted and oxidized graphenes. Tribol. Lett. 2013, 50, 137–144.

    Article  CAS  Google Scholar 

  21. Behnam, A.; Noriega, L.; Choy, Y.; Wu, Z. C.; Rinzler, A. G.; Ural, A. Resistivity scaling in single-walled carbon nanotube films patterned to submicron dimensions. Appl. Phys. Lett. 2006, 89, 093107.

    Article  Google Scholar 

  22. Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; van den Brink, J.; Kelly, P. J. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101, 026803.

    Article  CAS  Google Scholar 

  23. Yu, Y. J.; Zhao, Y.; Ryu, S.; Brus, L. E.; Kim, K. S.; Kim, P. Tuning the graphene work function by electric field effect. Nano Lett. 2009, 9, 3430–3434.

    Article  CAS  Google Scholar 

  24. Calleja, M.; Tello, M.; Garcia, R. Size determination of field-induced water menisci in noncontact atomic force microscopy. J. Appl. Phys. 2002, 92, 5539–5542.

    Article  CAS  Google Scholar 

  25. Garcia, R.; Calleja, M.; Rohrer, H. Patterning of silicon surfaces with noncontact atomic force microscopy: Field-induced formation of nanometer-size water bridges. J. Appl. Phys. 1999, 86, 1898–1903.

    Article  CAS  Google Scholar 

  26. Lyuksyutov, S. F.; Paramonov, P. B.; Sharipov, R. A.; Sigalov, G. Induced nanoscale deformations in polymers using atomic force microscopy. Phys. Rev. B 2004, 70, 174110.

    Article  Google Scholar 

  27. Saitta, A. M.; Saija, F.; Giaquinta, P. V. Ab initio molecular dynamics study of dissociation of water under an electric field. Phys. Rev. Lett. 2012, 108, 207801.

    Article  Google Scholar 

  28. Rothfuss, C. J.; Medvedev, V. K.; Stuve, E. M. The influence of the surface electric field on water ionization: A two step dissociative ionization and desorption mechanism for water ion cluster emission from a platinum field emitter tip. J. Electroanal. Chem. 2003, 554, 133–143.

    Google Scholar 

  29. Avouris, Ph.; Walkup, R. E.; Rossi, A. R.; Akpati, H. C.; Nordlander, P.; Shen, T.-C.; Abeln, G. C.; Lyding, J. W. Breaking individual chemical bounds via STM-induced excitations. Surf. Sci. 1996, 363, 368–377.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul E. Sheehan or Sergei F. Lyuksyutov.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, WK., Tsoi, S., Whitener, K.E. et al. Robust reduction of graphene fluoride using an electrostatically biased scanning probe. Nano Res. 6, 767–774 (2013). https://doi.org/10.1007/s12274-013-0355-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0355-1

Keywords

Navigation