Skip to main content
Log in

Enhanced performance of GaN nanobelt-based photodetectors by means of piezotronic effects

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

GaN ultraviolet (UV) photodetectors (PDs) have attracted tremendous attention due to their chemical stability in harsh environments. Although Schottky-contacted GaN-based UV PDs have been implemented with better performance than that of ohmic contacts, it remains unknown how the barrier height at local Schottky contacts controls the sensors’ performance. In this work, the piezotronic effect was employed to tune the Schottky barrier height (SBH) at local contacts and hence enhance the performances of Schottky-contacted metal-semiconductor-metal (MSM) structured GaN nanobelt (NB)-based PDs. In general, the response level of the PDs was obviously enhanced by the piezotronic effect when applying a strain on devices. The responsivity of the PD was increased by 18%, and the sensitivity was enhanced by from 22% to 31%, when illuminated by a 325 nm laser with light intensity ranging from 12 to 2 W/cm2. Carefully studying the mechanism using band structure diagrams reveals that the observed enhancement of the PD performance resulted from the change in SBH caused by external strain as well as light intensity. Using piezotronic effects thus provides a practical way to enhance the performance of PDs made not only of GaN, but also other wurtzite and zinc blende family materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Razeghi, M.; Rogalski, A. Semiconductor ultraviolet detectors. J. Appl. Phys. 1996, 79, 7433.

    Article  CAS  Google Scholar 

  2. Prasai, D.; John, W.; Weixelbaum, L.; Krüger, O.; Wagner, G.; Sperfeld, P.; Nowy, S.; Friedrich, D.; Winter, S.; Weiss, T. Highly reliable silicon carbide photodiodes for visible-blind ultraviolet detector applications. J. Mater. Res. 2013, 28, 33–37.

    Article  CAS  Google Scholar 

  3. Hochedez, J. F. E.; Schuehle, U. H.; Pau, J. L.; Alvarez, J.; Hainaut, O.; Appourchaux, T. P.; Auret, F. D.; Belsky, A.; Bergonzo, P.; Castex, M. C. et al. New UV detectors for solar observations. In Proceedings of Innovative Telescopes and Instrumentation for Solar Astrophysics, Hawai’i, USA, 2002, pp 419–426.

    Google Scholar 

  4. Fernandez-Saldivar, J. A.; Underwood, C. I.; Mackin, S. Low-cost microsatellite UV instrument suite for monitoring ozone and volcanic sulphur dioxide. In Remote Sensing of Clouds and the Atmosphere XI, Stockholm, Sweden, 2006, pp 63621.

    Google Scholar 

  5. Chen, Q.; Khan, M. A.; Sun, C. J.; Yang, J. W. Visible-blind ultraviolet photodetectors based on GaN p-n junctions. Electron Lett. 1995, 31, 1781–1782.

    Article  CAS  Google Scholar 

  6. Van Hove, J. M.; Chow, P. P.; Hickman, R.; Wowchak, A. M.; Klaassen, J. J.; Polley, C. J. Visible blind UV GaN photovoltaic detector arrays grown by rf atomic nitrogen plasma MBE. In MRS Fall Meeting, 1996, pp 12271–1232.

    Google Scholar 

  7. Van Hove, J. M.; Hickman, R.; Klaassen, J. J.; Chow, P. P.; Ruden, P. P. Ultraviolet-sensitive, visible-blind GaN photodiodes fabricated by molecular beam epitaxy. Appl. Phys. Lett. 1997, 70, 2282–2284.

    Article  Google Scholar 

  8. Osinsky, A.; Gangopadhyay, S.; Yang, J. W.; Gaska, R.; Kuksenkov, D.; Temkin, H.; Shmagin, I. K.; Chang, Y. C.; Muth, J. F.; Kolbas, R. M. Visible-blind GaN Schottky barrier detectors grown on Si(111). Appl. Phys. Lett. 1998, 72, 551–553.

    Article  CAS  Google Scholar 

  9. Walker, D.; Saxler, A.; Kung, P.; Zhang, X.; Hamilton, M.; Diaz, J.; Razeghi, M. Visible blind GaN p-i-n photodiodes. Appl. Phys. Lett. 1998, 72, 3303–3305.

    Article  CAS  Google Scholar 

  10. Misra, M.; Moustakas, T. D.; Vaudo, R. P.; Singh, R.; Shah, K. S. Photoconducting ultraviolet detectors based on GaN films grown by electron cyclotron resonance molecular beam epitaxy. In Proceedings of the X-ray and Ultraviolet Sensors and Applications, San Diego, USA, 1995, pp 78–86.

    Google Scholar 

  11. Khan, M. A.; Shur, M. S.; Chen, Q.; Kuznia, J. N.; Sun, C. J. Gated photodetector based on GaN/AlGaN heterostructure field-effect transistor. Electron Lett. 1995, 31, 398–400.

    Article  CAS  Google Scholar 

  12. Lim, B. W.; Chen, Q. C.; Yang, J. Y.; Khan, M. A. High responsitivity intrinsic photoconductors based on AlxGa1−x N. Appl. Phys. Lett. 1996, 68, 3761–3762.

    Article  CAS  Google Scholar 

  13. Munoz, E.; Monroy, E.; Garrido, J. A.; Izpura, I.; Sanchez, F. J.; Sanchez-Garcia, M. A.; Calleja, E.; Beaumont, B.; Gibart, P. Photoconductor gain mechanisms in GaN ultraviolet detectors. Appl. Phys. Lett. 1997, 71, 870–872.

    Article  CAS  Google Scholar 

  14. Khan, M. A.; Kuznia, J. N.; Olson, D. T.; Blasingame, M.; Bhattarai, A. R. Schottky-barrier photodetector based on Mg-doped p-type GaN films. Appl. Phys. Lett. 1993, 63, 2455–2456.

    Article  CAS  Google Scholar 

  15. Chen, Q.; Yang, J. W.; Osinsky, A.; Gangopadhyay, S.; Lim, B.; Anwar, M. Z.; Khan, M. A.; Kuksenkov, D.; Temkin, H. Schottky barrier detectors on GaN for visible-blind ultraviolet detection. Appl. Phys. Lett. 1997, 70, 2277–2279.

    Article  CAS  Google Scholar 

  16. Binet, F.; Duboz, J. Y.; Laurent, N.; Rosencher, E.; Briot, O.; Aulombard, R. L. Properties of a photovoltaic detector based on an n-type GaN Schottky barrier. J. Appl. Phys. 1997, 81, 6449–6454.

    Article  CAS  Google Scholar 

  17. Smith, G. A.; Estes, M. J.; Van Nostrand, J. E.; Dang, T.; Schreiber, P. J.; Temkin, H.; Hoelscher, J. UV Schottky-barrier detector development for possible air force applications. In Proceedings of the Photodetectors: Materials and Devices IV, San Jose, USA, 1999, pp 184–192.

    Google Scholar 

  18. Kung, P.; Walker, D.; Sandvik, P. M.; Hamilton, M.; Diaz, J. E.; Lee, I. H.; Razeghi, M. Schottky MSM photodetectors on GaN films grown on sapphire by lateral epitaxial overgrowth. In Proceedings of the Photodetectors: Materials and Devices IV, San Jose, USA, 1999, pp 223–229.

    Google Scholar 

  19. Yu, R. M.; Dong, L.; Pan, C. F.; Niu, S. M.; Liu, H. F.; Liu, W.; Chua, S.; Chi, D. Z.; Wang, Z. L. Piezotronic effect on the transport properties of GaN nanobelts for active flexible electronics. Adv. Mater. 2012, 24, 3532–3537.

    Article  CAS  Google Scholar 

  20. Wang, Z. L. Progress in piezotronics and piezo-phototronics. Adv. Mater. 2012, 24, 4632–4646.

    Article  CAS  Google Scholar 

  21. Yang, Q.; Wang, W. H.; Xu, S.; Wang, Z. L. Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. Nano Lett. 2011, 11, 4012–4017.

    Article  CAS  Google Scholar 

  22. Yang, Q.; Liu, Y.; Pan, C. F.; Chen, J.; Wen, X. N.; Wang, Z. L. Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect. Nano Lett. 2013, 13, 607–613.

    Article  CAS  Google Scholar 

  23. Pan, C. F.; Niu, S. M.; Ding, Y.; Dong, L.; Yu, R. M.; Liu, Y.; Zhu, G.; Wang, Z. L. Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect. Nano Lett. 2012, 12, 3302–3307.

    Article  CAS  Google Scholar 

  24. Zhang, Y.; Yang, Y.; Wang, Z. L. Piezo-phototronics effect on nano/microwire solar cells. Energy Environ. Sci. 2012, 5, 6850–6856.

    Article  CAS  Google Scholar 

  25. Yu, R. M.; Pan, C. F.; Wang, Z. L. High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect. Energy Environ. Sci. 2013, 6, 494–499.

    Article  CAS  Google Scholar 

  26. Pan, C. F.; Yu, R. M.; Niu, S. M.; Zhu, G.; Wang, Z. L. Piezotroniceffect on the sensitivity and signal level of Schottky contacted proactive micro/nanowire nanosensors. ACS Nano 2013, 7, 1803–1810.

    Article  CAS  Google Scholar 

  27. Liu, H. F.; Liu, W.; Chua, S. J.; Chi, D. Z. Fabricating high-quality GaN-based nanobelts by strain-controlled cracking of thin solid films for application in piezotronics. Nano Energy 2012, 1, 316–321.

    Article  CAS  Google Scholar 

  28. Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34–39.

    Article  CAS  Google Scholar 

  29. Zhang, Y.; Liu, Y.; Wang, Z. L. Fundamental theory of piezotronics. Adv. Mater. 2011, 23, 3004–3013.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, R., Pan, C., Hu, Y. et al. Enhanced performance of GaN nanobelt-based photodetectors by means of piezotronic effects. Nano Res. 6, 758–766 (2013). https://doi.org/10.1007/s12274-013-0354-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0354-2

Keywords

Navigation