Skip to main content
Log in

ZnO hierarchical aggregates: Solvothermal synthesis and application in dye-sensitized solar cells

Nano Research Aims and scope Submit manuscript

Abstract

ZnO hierarchical aggregates have been successfully synthesized by solvothermal methods through reaction of zinc acetate and potassium hydroxide in methanol solution. The shapes of the aggregates were controlled by varying the ratio of Zn2+ and OH ions in the reaction system, while the size can be tuned from 2 μm to 100 nm. Oriented attachment was found to be the main mechanism of the three-dimensional assembly of small ZnO nanocrystallites into large aggregates. The performance of these aggregates in dye-sensitized solar cells (DSCs) indicated that hierarchical structured photoelectrodes can increase energy conversion efficiency of DSCs effectively when the sizes of aggregates match the wavelengths of visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353, 737–740.

    Article  Google Scholar 

  2. Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663.

    Article  CAS  Google Scholar 

  3. Jose, R.; Thavasi, V.; Ramakrishna, S. Metal oxides for dye-sensitized solar cells. J. Am. Ceram. Soc. 2009, 92, 289–301.

    Article  CAS  Google Scholar 

  4. Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009, 21, 4087–4108.

    Article  CAS  Google Scholar 

  5. Ito, S.; Murakami, T. N.; Comte, P.; Liska, P.; Gratzel, C.; Nazeeruddin, M. K.; Gratzel, M. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 2008, 516, 4613–4619.

    Article  CAS  Google Scholar 

  6. Yin, X.; Wang, B.; He, M.; He, T. Facile synthesis of ZnO nanocrystals via a solid state reaction for high performance plastic dye-sensitized solar cells. Nano Res. 2012, 5, 1–10.

    Article  CAS  Google Scholar 

  7. Chou, T. P.; Zhang, Q. F.; Fryxell, G. E.; Cao, G. Z. Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Adv. Mater. 2007, 19, 2588–2592.

    Article  CAS  Google Scholar 

  8. Zhang, Q. F.; and Cao, G. Z. Hierarchically structured photoelectrodes for dye-sensitized solar cells. J. Mater. Chem. 2011, 21, 6769–6774.

    Article  CAS  Google Scholar 

  9. Zhang, Q. F.; Chou, T. P.; Russo, B.; Jenekhe, S. A.; Cao, G. Z. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew. Chem. Int. Edit. 2008, 47, 2402–2406.

    Article  CAS  Google Scholar 

  10. Zhang, Q. F.; Chou, T. P.; Russo, B.; Jenekhe, S. A.; Cao, G. Z. Polydisperse aggregates of ZnO nanocrystallites: A method for energy-conversion-efficiency enhancement in dye-sensitized solar cell. Adv. Funct. Mater. 2008, 18 1654–1660.

    Article  CAS  Google Scholar 

  11. He, C. X.; Lei, B. X.; Wang, Y. F.; Su, C. Y.; Fang, Y. P.; Kuang, D. B. Sonochemical preparation of hierarchical ZnO hollow spheres for efficient dye-sensitized solar cells. Chem. Eur. J. 2010, 16, 8757–8761.

    Article  CAS  Google Scholar 

  12. Sauvage, F.; Chen, D.; Comte, H. P.; Huang, F. Z.; Heiniger, L. P.; Cheng, Y. B.; Caruso, R. A.; Graetzel, M. Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano, 2010, 4, 4420–4425.

    Article  CAS  Google Scholar 

  13. Huang, F. Z.; Chen, D. H.; Zhang, L. X.; Caruso, R. A.; Cheng, Y. B. Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells Adv. Funct. Mater. 2010, 20, 1301–1305.

    Article  CAS  Google Scholar 

  14. Kim, Y. J.; Lee, M. H.; Kim, H. J.; Lim, G.; Choi, Y. S.; Park, N. G.; Kim, K.; Lee, W. I. Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv. Mater. 2009, 21, 3668–3673.

    Article  CAS  Google Scholar 

  15. Memarian, N.; Concina, I.; Braga, A.; Rozati, S. M.; Vomiero, A.; Sberveglieri, G. Hierarchically assembled ZnO nanocrystallites for high-efficiency dye-sensitized solar cells. Angew. Chem. Int. Ed. 2011, 50, 12321–12324.

    Article  CAS  Google Scholar 

  16. Didier, J.; Jean, G.; Noureddine, J.; Fernand, F. Submicrometer zinc oxide particles: Elaboration in polyol medium and morphological characteristics. J. Mater. Res. 1995, 10, 77–83.

    Article  Google Scholar 

  17. Seelig, E. W.; Tang, B.; Yamilov, A.; Cao, H.; Chang, R. P. H. Self-assembled 3D photonic crystals from ZnO colloidal spheres. Mater. Chem. Phys. 2003, 80, 257–263.

    Article  CAS  Google Scholar 

  18. Chen, D. H.; Cao, L.; Huang, F. Z.; Imperia, P.; Cheng, Y. B.; Caruso, R. A.; Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14–23 nm). J. Am. Chem. Soc. 2010, 132, 4438–4444.

    Article  CAS  Google Scholar 

  19. Zhang, Q.; Joo, J. B.; Lu, Z. D.; Dahl, M.; Oliveira, D. Q. L.; Ye, M.; Yin, Y. D. Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Res. 2011, 4, 103–114.

    Article  CAS  Google Scholar 

  20. Banfield, J. F.; Welch, S. A.; Zhang, H.; Ebert, T. T.; Penn, R. L. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 2000, 289, 751–754.

    Article  CAS  Google Scholar 

  21. Penn, R. L.; Banfield, J. F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 1998, 281, 969–971.

    Article  CAS  Google Scholar 

  22. Liu, Y. X.; Wang, D. S.; Peng, Q.; Chu, D. R.; Liu X. W.; Li, Y. D. Directly assembling ligand-free ZnO nanocrystals into three-dimensional mesoporous structures by oriented attachment. Inorg. Chem. 2011, 50, 5841–5847.

    Article  CAS  Google Scholar 

  23. Liu, Y. X.; Shi, J. X.; Peng, Q.; Li, Y. D. Self-assembly of ZnO nanocrystals into nanoporous pyramids: High selective adsorption and photocatalytic activity. J. Mater. Chem. 2012, 22, 6539–6541.

    Article  CAS  Google Scholar 

  24. Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: From nanodots, to nanorods. Angew. Chem. Int. Edit. 2002, 41, 1188–1191.

    Article  CAS  Google Scholar 

  25. Hosono, E.; Fujihara, S.; Kimura T.; Imai, H. J. Non-basic solution routes to prepare ZnO nanoparticles. Sol-Gel Sci. Technol. 2004, 29, 71–79.

    Article  CAS  Google Scholar 

  26. Dong, Z., H.; Lai, X, Y.; Halpert, J. E.; Yang, N. L.; Yi, L. X.; Zhai, J.; Wang, D.; Tang, Z. Y.; Jiang, L. Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv. Mater. 2012, 24, 1046–1049.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Peng or Yadong Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Liu, Y., Peng, Q. et al. ZnO hierarchical aggregates: Solvothermal synthesis and application in dye-sensitized solar cells. Nano Res. 6, 441–448 (2013). https://doi.org/10.1007/s12274-013-0321-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0321-y

Keywords

Navigation