Nano Research

, Volume 6, Issue 2, pp 138–148

Effect of anchor and functional groups in functionalized graphene devices

Authors

  • Elvira Pembroke
    • Departments of ChemistryRice University
  • Gedeng Ruan
    • Departments of ChemistryRice University
  • Alexander Sinitskii
    • Departments of ChemistryRice University
  • David A. Corley
    • Departments of ChemistryRice University
  • Zheng Yan
    • Departments of ChemistryRice University
  • Zhengzong Sun
    • Departments of ChemistryRice University
    • Departments of ChemistryRice University
    • Computer Science, Mechanical Engineering and Materials Science, and the Smalley Institute for Nanoscale Science and TechnologyRice University
Research Article

DOI: 10.1007/s12274-013-0289-7

Cite this article as:
Pembroke, E., Ruan, G., Sinitskii, A. et al. Nano Res. (2013) 6: 138. doi:10.1007/s12274-013-0289-7

Abstract

The electrical properties of chemically derived graphene and graphene grown by chemical vapor deposition (CVD), until now, have been inferior to those of mechanically exfoliated graphene. However, because graphene is easier to produce in large quantities through CVD or growth from solid carbon sources, it has a higher potential for use in future electronics applications. Generally, modifications to the pristine lattice structure of graphene tend to adversely affect the electrical properties by shifting the doping level and changing the conductivity and the mobility. Here we show that a small degree of graphene surface functionalization, using diazonium salts with electron-withdrawing and electron-donating functional groups, is sufficient to predominantly induce p-type doping, undiminished mobility, and higher conductivity at the neutrality point. Molecules without a diazonium anchor group desorb easily and do not have a significant effect on the electronic properties of graphene devices. We further demonstrate the variability between identically fabricated pristine devices, thereby underscoring the caution needed when characterizing graphene device behaviors lest conclusions be drawn based on singular extremes.
https://static-content.springer.com/image/art%3A10.1007%2Fs12274-013-0289-7/MediaObjects/12274_2013_289_Fig1_HTML.gif

Keywords

chemical vapor depositiongraphenediazonium functionalizationneutrality point

Supplementary material

12274_2013_289_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1.09 MB.

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013