Skip to main content
Log in

Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in Li-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

[020]-oriented tin sulfide nanobelts with a length/thickness ratio of 100 have been synthesized by a facile hydrothermal method without any surfactants, and the nanobelts have shown good strain-accommodating properties as well as good electrochemical performance as the anode for Li-ion batteries. The formation of the nanobelts results from a precipitation-dissolution-transformation mechanism, and the [020] oriented growth can be ascribed to the {010} facet family having the lowest atomic density. In particular, SnS shows clear Li-Sn alloying/de-alloying reversible reactions in the potential range 0.1–1.0 V. Based on galvanostatic measurements and electrochemical impedance spectroscopy, SnS nanobelts have shown impressive rate performance. The post-cycled SnS nanobelts were completely transformed into metallic tin, and preserved the one-dimensional structure due to their flexibility which accommodates the large volumetric expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharon, M.; Basavaswaran, K. Photoelectrochemical behaviour of tin monosulphide. Solar Cells 1988, 25, 97–107.

    Article  CAS  Google Scholar 

  2. Price, L. S.; Parkin, I. P.; Hardy, A. M. E.; Clark, R. J. H.; Hibbert, T. G.; Molloy, K. C. Atmospheric pressure chemical vapor deposition of tin sulfides (SnS, Sn2S3, and SnS2) on glass. Chem. Mater. 1999, 11, 1792–1799.

    Article  CAS  Google Scholar 

  3. Rajeshwar, K.; de Tacconi, N. R.; Chenthamarakshan, C. R. Semiconductor-based composite materials: Preparation, properties, and performance. Chem. Mater. 2001, 13, 2765–2782.

    Article  CAS  Google Scholar 

  4. Chen, D.; Shen, G. Z.; Tang, K. B.; Lei, S. J.; Zheng, H. G.; Qian, Y. T. Microwave-assisted polyol synthesis of nanoscale SnSx [x = 1, 2] flakes. J. Cryst. Growth 2004, 260, 469–474.

    Article  CAS  Google Scholar 

  5. Nassary, M. M. Temperature dependence of the electrical conductivity, Hall effect and thermoelectric power of SnS single crystals. J. Alloy. Compd. 2005, 398, 21–25.

    Article  CAS  Google Scholar 

  6. Boonsalee, S.; Gudavarthy, R. V.; Bohannan, E. W.; Switzer, J. A. Epitaxial electrodeposition of tin(II) sulfide nanodisks on single-crystal Au(100). Chem. Mater. 2008, 20, 5737–5742.

    Article  CAS  Google Scholar 

  7. Hayashi, A.; Konishi, T.; Tadanaga, K.; Minami, T.; Tatsumisago, M. All-solid-state lithium secondary batteries with SnS-P2S5 negative electrodes and Li2S-P2S5 solid electrolytes. J. Power Sources 2005, 146, 496–500.

    Article  CAS  Google Scholar 

  8. Li, Y.; Tu, J. P.; Huang, X. H.; Wu, H. M.; Yuan, Y. F. Nanoscale SnS with and without carbon-coatings as an anode material for lithium ion batteries. Electrochim. Acta 2006, 52, 1383–1389.

    Article  CAS  Google Scholar 

  9. Li, Y.; Tu, J. P.; Huang, X. H.; Wu, H. M.; Yuan, Y. F. Net-like SnS/carbon nanocomposite film anode material for lithium ion batteries. Electrochem. Commun. 2007, 9, 49–53.

    Article  Google Scholar 

  10. Aso, K.; Hayashi, A.; Tatsumisago, M. Synthesis of needlelike and platelike SnS active materials in high-boiling solvents and their application to all-solid-state lithium secondary batteries. Cryst. Growth Des. 2011, 11, 3900–3904.

    Article  CAS  Google Scholar 

  11. Zhang, Y. J.; Lu, J.; Shen, S. L.; Xu, H. R.; Wang, Q. B. Ultralarge single crystal SnS rectangular nanosheets. Chem. Commun. 2011, 47, 5226–5228.

    Article  CAS  Google Scholar 

  12. Hegde, S. S.; Kunjomana, A. G.; Chandrasekharan, K. A.; Ramesh, K.; Prashantha, M. Optical and electrical properties of SnS semiconductor crystals grown by physical vapor deposition technique. Physica B 2011, 406, 1143–1148.

    Article  CAS  Google Scholar 

  13. Yang, J.; Winter, M.; Besenhard, J. O. Small particle size multiphase Li-alloy anodes for lithium-ion-batteries. Solid State Ionics 1996, 90, 281–287.

    Article  CAS  Google Scholar 

  14. Gou, X. L.; Chen, J.; Shen, P. W. Synthesis, characterization and application of SnSx (x = 1, 2) nanoparticles. Mater. Chem. Phys. 2005, 93, 557–566.

    Article  CAS  Google Scholar 

  15. Park, M. S.; Wang, G. X.; Kang, Y. M.; Wexler, D.; Dou, S. X.; Liu, H. K. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Ed. 2007, 46, 750–753.

    Article  CAS  Google Scholar 

  16. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  CAS  Google Scholar 

  17. Wang, Z.; Luan, D.; Madhavi, S.; Li, M. C.; Lou, W. X. α-Fe2O3 nanotubes with superior lithium storage capability. Chem. Commun. 2011, 47, 8061–8063.

    Article  CAS  Google Scholar 

  18. Kim, D. K.; Muralidharan, P.; Lee, H. W.; Ruffo, R.; Yang, Y.; Chan, C. K.; Peng, H.; Huggins, R. A.; Cui, Y. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 2008, 8, 3948–3952.

    Article  CAS  Google Scholar 

  19. Kim, M. G.; Jo, M.; Hong, Y.-S.; Cho, J. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode. Chem. Commun. 2009, 218–220.

  20. Lim, S. Y.; Yoon, C. S.; Cho, J. P. Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries. Chem. Mater. 2008, 20, 4560–4564.

    Article  CAS  Google Scholar 

  21. Li, X. X.; Cheng, F. Y.; Guo, B.; Chen, J. Template- synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries. J. Phys. Chem. B 2005, 109, 14017–14024.

    Article  CAS  Google Scholar 

  22. Liu, J.; Xue, D. Sn-based nanomaterials converted from SnS nanobelts: Facile synthesis, characterizations, optical properties and energy storage performances. Electrochim. Acta 2010, 56, 243–250.

    Article  CAS  Google Scholar 

  23. Panda, S. K.; Datta, A.; Dev, A.; Gorai, S.; Chaudhuri, S. Surfactant-assisted synthesis of SnS nanowires grown on tin foils. Cryst. Growth Des. 2006, 6, 2177–2181.

    Article  CAS  Google Scholar 

  24. Biswas, S.; Kar, S.; Chaudhuri, S. Thioglycolic. acid (TGA) assisted hydrothermal synthesis of SnS nanorods and nanosheets. Appl. Surf. Sci. 2007, 253, 9259–9266.

    Article  CAS  Google Scholar 

  25. Dhanaraj, G.; Byrappa, K.; Prasad, V.; Dudley, M. Springer Handbook of Crystal Growth; Springer-Verlag: Berlin Heidelberg, 2010.

    Book  Google Scholar 

  26. Francis, R. J.; Price, S. J.; Evans, J. S. O.; O’Brien, S.; O’Hare, D.; Clark, S. M. Hydrothermal synthesis of microporous tin sulfides studied by real-time in situ energy-dispersive X-ray diffraction. Chem. Mater. 1996, 8, 2102–2108.

    Article  CAS  Google Scholar 

  27. Mariano, A. N.; Chopra, K. L. Polymorphism in some IV–VI compounds induced by high pressure and thin-film epitaxial growth. Appl. Phys. Lett. 1967, 10, 282–284.

    Article  CAS  Google Scholar 

  28. Kim, D.; Shimpi, P.; Gao, P. X. Zigzag zinc blende ZnS nanowires: Large scale synthesis and their structure evolution induced by electron irradiation. Nano Res. 2009, 2, 966–974.

    Article  CAS  Google Scholar 

  29. Hickey, S. G.; Waurisch, C.; Rellinghaus, B.; Eychmuller, A. Size and shape control of colloidally synthesized IV–VI nanoparticulate tin(II) sulfide. J. Am. Chem. Soc. 2008, 130, 14978–14980.

    Article  CAS  Google Scholar 

  30. Tanusevski, A. Optical and photoelectric properties of SnS thin films prepared by chemical bath deposition. Semicond. Sci. Technol. 2003, 18, 501–505.

    Article  CAS  Google Scholar 

  31. Liu, H. T.; Liu, Y.; Wang, Z.; He, P. Facile synthesis of monodisperse, size-tunable SnS nanoparticles potentially for solar cell energy conversion. Nanotechnology 2010, 21, 105707.

    Article  Google Scholar 

  32. Seo, J. W.; Jang, J. T.; Park, S. W.; Kim, C. J.; Park, B. W.; Cheon, J. W. Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Adv. Mater. 2008, 20, 4269–4273.

    Article  CAS  Google Scholar 

  33. Zhang, W. -M.; Hu, J. -S.; Guo, Y. -G.; Zheng, S. -F.; Zhong, L. -S. Song, W. -G.; Wan, L. -J. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 2008, 20, 1160–1165.

    Article  CAS  Google Scholar 

  34. Liu, S.; Yin, X. M.; Chen, L. B.; Li, Q. H.; Wang, T. H. Synthesis of self-assembled 3D flowerlike SnS2 nanostructures with enhanced lithium ion storage property. Solid State Sci. 2010, 12, 712–718.

    Article  CAS  Google Scholar 

  35. Huggins, R. A. Lithium alloy negative electrodes. J. Power Sources 1999, 81–82, 13–19.

    Article  Google Scholar 

  36. Idota, Y.; Kubota, T.; Matsufuji, A.; Maekawa, Y.; Miyasaka, T. Tin-based amorphous oxide: A high-capacity lithium- ion-storage material. Science 1997, 276, 1395–1397.

    Article  CAS  Google Scholar 

  37. Besenhard, J. O. Handbook of Battery Materials; Wiley-VCH: Weinheim, 1999.

    Google Scholar 

  38. Courtney, I. A.; Dahn, J. R. Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass. J. Electrochem. Soc. 1997, 144, 2943–2948.

    Article  CAS  Google Scholar 

  39. Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer, L. A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 2006, 18, 2325–2329.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Peng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Nan, C., Li, L. et al. Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in Li-ion batteries. Nano Res. 6, 55–64 (2013). https://doi.org/10.1007/s12274-012-0281-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0281-7

Keywords

Navigation