Skip to main content
Log in

Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The efficient catalytic oxidation of water to dioxygen is envisioned to play an important role in solar fuel production and artificial photosynthetic systems. Despite tremendous efforts, the development of oxygen evolution reaction (OER) catalysts with high activity and low cost under mild conditions remains a great challenge. In this work, we develop a hybrid consisting of Co3O4 nanocrystals supported on single-walled carbon nanotubes (SWNTs) via a simple self-assembly approach. A Co3O4/SWNTs hybrid electrode for the OER exhibits much enhanced catalytic activity as well as superior stability under neutral and alkaline conditions compared with bare Co3O4, which only performs well in alkaline solution. Moreover, the turnover frequency for the OER exhibited by Co3O4/SWNTs in neutral water is higher than for bare Co3O4 catalysts. Synergetic chemical coupling effects between Co3O4 nanocrystals and SWNTs, revealed by the synchrotron X-ray absorption near edge structure (XANES) technique, can be regarded as contributing to the activity, cycling stability and stable operation under neutral conditions. Use of the SWNTs as an immobilization matrix substantially increases the active electrode surface area, enhances the durability of catalysts under neutral conditions and improves the electronic coupling between Co redox-active sites of Co3O4 and the electrode surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armaroli, N.; Balzani, V. The Future of energy supply: Challenges and opportunities. Angew. Chem. Int. Ed. 2007, 46, 52–66.

    Article  CAS  Google Scholar 

  2. Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. ChemCatChem. 2010, 2, 724–761.

    Article  CAS  Google Scholar 

  3. Sala, X.; Romero, I.; Rodríguez, M.; Escriche, L.; Llobet, A. Molecular catalysts that oxidize water to dioxygen. Angew. Chem. Int. Ed. 2009, 48, 2842–2852.

    Article  CAS  Google Scholar 

  4. Nakagawa, T.; Bjorge, N. S.; Murray, R. W. Electrogenerated IrOx nanoparticles as dissolved redox catalysts for water oxidation. J. Am. Chem. Soc. 2009, 131, 15578–15579.

    Article  CAS  Google Scholar 

  5. Hou, H. J. M. Structural and mechanistic aspects of Mn-oxo and Co-based compounds in water oxidation catalysis and potential applications in solar fuel production. J. Integr. Plant Biol. 2010, 52, 704–711.

    Article  CAS  Google Scholar 

  6. Jiao, F.; Frei, H. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ. Sci. 2010, 3, 1018–1027.

    Article  CAS  Google Scholar 

  7. Artero, V.; Kerlidou, M. C.; Fontecave, M. Splitting water with cobalt. Angew. Chem. Int. Ed. 2011, 55, 7238–7266.

    Article  Google Scholar 

  8. Wee, T. -L.; Sherman, B. D.; Gust, D.; Moore, A. L.; Moore, T. A.; Liu, Y.; Scaiano, J. C. Photochemical synthesis of a water oxidation catalyst based on cobalt nanostructures. J. Am. Chem. Soc. 2011, 133, 16742–16745.

    Article  CAS  Google Scholar 

  9. McCool, N.; Robinson, D. M.; Sheats, J. E.; Dismukes, G. C. A Co4O4 “cubane” water oxidation catalyst inspired by photosynthesis. J. Am. Chem. Soc. 2011, 133, 11446–11449.

    Article  CAS  Google Scholar 

  10. Kanan, M. W.; Yano, J.; Surendranath, Y.; Dinča, M.; Yachandra, V. K.; Nocera, D. G. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 2010, 132, 13692–13701.

    Article  CAS  Google Scholar 

  11. Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.

    Article  CAS  Google Scholar 

  12. Esswein, A. J.; Surendranath, Y.; Reece, S. Y.; Nocera, D. G. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters. Energy Environ. Sci. 2011, 4, 499–504.

    Article  CAS  Google Scholar 

  13. Esswein, A. J.; McMurdo, M. J.; Ross, P. N.; Bell, A. T.; Tilley, T. D. Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 2009, 113, 15068–15072.

    Article  CAS  Google Scholar 

  14. Chou, N. H.; Ross, P. N.; Bell, A. T.; Tilley, T. D. Comparison of cobalt-based nanoparticles as electrocatalysts for water oxidation. ChemSusChem. 2011, 4, 1566–1569.

    Article  CAS  Google Scholar 

  15. Gerkent, J. B.; McAlpint, J. G.; J. Chent, Y. C.; Rigsby, M. L.; Casey, W. H.; Britt, R. D.; Stahl, S. S. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: The thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 2011, 133, 14431–14442.

    Article  Google Scholar 

  16. Minguzzi, A.; Fan, F. -R. F.; Vertova, A.; Rondinini, S.; Bard, A. J. Dynamic potential-pH diagrams application to electrocatalysts for water oxidation. Chem. Sci. 2012, 3, 217–229.

    Article  CAS  Google Scholar 

  17. Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.

    Article  CAS  Google Scholar 

  18. Jiao, F.; Frei, H. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew. Chem. Int. Ed. 2009, 48, 1841–1844.

    Article  CAS  Google Scholar 

  19. Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

    Article  CAS  Google Scholar 

  20. Li, X.; Qin, Y.; Picraux, S. T.; Guo, Z. -X. Noncovalent assembly of carbon nanotube-inorganic hybrids. J. Mater. Chem. 2011, 21, 7527–7547.

    Article  CAS  Google Scholar 

  21. Mu, Y.; Liang, H.; Hu, J.; Jiang, L.; Wan, L. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J. Phys. Chem. B 2005, 109, 22212–22216.

    Article  CAS  Google Scholar 

  22. Toma, F. M.; Sartorel, A.; Iurlo, M.; Carraro, M.; Parisse, P.; Maccato, C.; Rapino, S.; Gonzalez, B. R.; Amenitsch, H.; Ros, T. D., et al. Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces. Nat. Chem. 2010, 2, 826–831.

    Article  CAS  Google Scholar 

  23. Shimizu, K.; Wang, J. S.; Cheng, I. F.; Wai, C. M. Rapid and one-step synthesis of single-walled carbon nanotube-supported platinum (Pt/SWNT) using as-grown SWNTs through reduction by methanol. Energ. Fuels 2009, 23, 1662–1667.

    Article  CAS  Google Scholar 

  24. Li, X.; Jia, Y.; Cao, A. Tailored single-walled carbon nanotube-CdS nanoparticle hybrids for tunable optoelectronic devices. ACS Nano 2010, 4, 506–512.

    Article  CAS  Google Scholar 

  25. Zhao, H.; Li, L.; Yang, J.; Zhang, Y. Co@Pt-Ru core-shell nanoparticles supported on multiwalled carbon nanotube for methanol oxidation. Electrochem. Commun. 2008, 10, 1527–1529.

    Article  CAS  Google Scholar 

  26. Kongkanand, A.; Domínguez, R. M.; Kamat, P. V. Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett. 2007, 7, 676–680.

    Article  CAS  Google Scholar 

  27. Hu, L.; Peng, Q.; Li, Y. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 130, 16136–16137.

    Article  CAS  Google Scholar 

  28. Li, J.; Tang, S. B.; Lu, L.; Zeng, H. C. Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc. 2007, 129, 9401–9409.

    Article  CAS  Google Scholar 

  29. Mackiewicz, N.; Surendran, G.; Remita, H.; Keita, B.; Zhang, G.; Nadjo, L.; Hagege, A.; Doris, E.; Mioskowski, C. Supramolecular self-assembly of amphiphiles on carbon nanotubes: A versatile strategy for the construction of CNT/metal nanohybrids, application to electrocatalysis. J. Am. Chem. Soc. 2008, 130, 8110–8111.

    Article  CAS  Google Scholar 

  30. Jiang, J.; Li, L. C. Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route. Mater. Lett. 2007, 61, 4894–4896.

    Article  CAS  Google Scholar 

  31. Matsumoto, Y.; Sato, E. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater. Chem. Phys. 1986, 14, 397–426.

    Article  CAS  Google Scholar 

  32. Dogutan, D. K.; McGuire, R.; Nocera, D. G. Electocatalytic water oxidation by cobalt (III) hangman β-octafluoro corroles. J. Am. Chem. Soc. 2011, 133, 9178–9180.

    Article  CAS  Google Scholar 

  33. Schechter, A.; Stanevsky, M.; Mahammed, A.; Gross, Z. Four electron oxygen reduction by brominated cobalt corrole. Inorg. Chem. 2012, 51, 22–24.

    Article  CAS  Google Scholar 

  34. Li, F.; Zhang, B.; Li, X.; Jiang, Y.; Chen, L.; Li, Y. Sun, L. Highly efficient oxidation of water by a molecular catalyst immobilized on carbon nanotubes. Angew. Chem. Int. Ed. 2011, 50, 12276–12279.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Xie.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Xue, Y., Yan, X. et al. Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res. 5, 521–530 (2012). https://doi.org/10.1007/s12274-012-0237-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0237-y

Keywords

Navigation