Skip to main content
Log in

Studies of graphene-based nanoelectromechanical switches

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electromechanical switch devices employing suspended graphene as movable elements have been developed. Their on and off states can be controlled by modulating the electrostatic force applied to the graphene. The devices exhibit on-off ratios of up to 104 and lifetimes of over 500 cycles. The prototype device demonstrates the feasibility of using multilayer graphene in electromechanical systems. Measurements of the mechanical properties of the free-standing monolayer graphene gave a value of 0.96 TPa for the Young’s modulus and a van der Waals force with silicon oxide of 0.17 nN/nm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Craighead, H. G. Nanoelectromechanical systems. Science 2000, 290, 1532–1535.

    Article  CAS  Google Scholar 

  2. Meindl, J. D.; Chen, Q.; Davis, J. A. Limits on silicon nanoelectronics for terascale integration. Science 2001, 293, 2044–2049.

    Article  CAS  Google Scholar 

  3. Frank, D. J.; Dennard, R. H.; Nowak, E.; Solomon, P. M.; Taur, Y.; Wong, H. S. P. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 2001, 89, 259–288.

    Article  CAS  Google Scholar 

  4. Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289, 94–97.

    Article  CAS  Google Scholar 

  5. Tombler, T. W.; Zhou, C. W.; Alexseyev, L.; Kong, J.; Dai, H. J.; Lei, L.; Jayanthi, C. S.; Tang, M. J.; Wu, S. Y. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 2000, 405, 769–772.

    Article  CAS  Google Scholar 

  6. Semet, V.; Binh, V. T.; Guillot, D.; Teo, K. B. K.; Chhowalla, M.; Amaratunga, G. A. J.; Milne, W. I.; Legagneux, P.; Pribat, D. Reversible electromechanical characteristics of individual multiwall carbon nanotubes. Appl. Phys. Lett. 2005, 87, 223103.

    Article  Google Scholar 

  7. Jang, J. E.; Cha, S. N.; Choi, Y.; Amaratunga, G. A. J.; Kang, D. J.; Hasko, D. G.; Jung, J. E.; Kim, J. M. Nanoelectro-mechanical switches with vertically aligned carbon nanotubes. Appl. Phys. Lett. 2005, 87, 163114.

    Article  Google Scholar 

  8. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  9. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  CAS  Google Scholar 

  10. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  CAS  Google Scholar 

  11. Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

    Article  CAS  Google Scholar 

  12. Son, Y. W.; Cohen, M. M.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.

    Article  CAS  Google Scholar 

  13. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  CAS  Google Scholar 

  14. Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Roehrl, J., et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207.

    Article  CAS  Google Scholar 

  15. Zhang, L.; Shi, Z.; Wang, Y.; Yang, R.; Shi, D.; Zhang, G. Catalyst-free growth of nanographene films on various substrates. Nano Res. 2011, 4, 315–321.

    Article  CAS  Google Scholar 

  16. Yang, R.; Zhang, L.; Wang, Y.; Shi, Z.; Shi, D.; Gao, H.; Wang, E.; Zhang, G. An anisotropic etching effect in the graphene basal plane. Adv. Mater. 2010, 22, 4014–4019.

    Article  CAS  Google Scholar 

  17. Shi, Z.; Yang, R.; Zhang, L.; Wang, Y.; Liu, D.; Shi, D.; Wang, E.; Zhang, G. Patterning graphene with zigzag edges by self-aligned anisotropic etching. Adv. Mater. 2011, 23, 3061–3065.

    Article  CAS  Google Scholar 

  18. Milaninia, K. M.; Baldo, M. A.; Reina, A.; Kong, J. All graphene electromechanical switch fabricated by chemical vapor deposition. Appl. Phys. Lett. 2009, 95, 183105.

    Article  Google Scholar 

  19. Lauren, C. Fabrication of a three terminal nanomechanical graphene switch. In 2010 NNIN REU Research Accomplishments, 2010; p. 118.

  20. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    Article  CAS  Google Scholar 

  21. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  CAS  Google Scholar 

  22. Berciaud, S.; Ryu, S.; Brus, L. E.; Heinz, T. F. Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett. 2009, 9, 346–352.

    Article  CAS  Google Scholar 

  23. Bondi, A. van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441–451.

    Article  CAS  Google Scholar 

  24. Frank, I. W.; Tanenbaum, D. M.; Van der Zande, A. M.; McEuen, P. L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Tech. B 2007, 25, 2558–2561.

    Article  CAS  Google Scholar 

  25. Xu, Z. P. Graphene nano-ribbons under tension. J. Comput. Theor. Nanosci. 2009, 6, 625–628.

    Article  CAS  Google Scholar 

  26. Lee, B. H.; Hwang, H. J.; Cho, C. H.; Lim, S. K.; Lee, S. Y.; Hwang, H. Nano-electromechanical switch-CMOS hybrid technology and its applications. J. Nanosci. Nanotechnol. 2011, 11, 256–261.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyu Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Z., Lu, H., Zhang, L. et al. Studies of graphene-based nanoelectromechanical switches. Nano Res. 5, 82–87 (2012). https://doi.org/10.1007/s12274-011-0187-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0187-9

Keywords

Navigation