Skip to main content
Log in

Multifunctional FeCo-graphitic carbon nanocrystals for combined imaging, drug delivery and tumor-specific photothermal therapy in mice

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ultrasmall FeCo-graphitic carbon shell nanocrystals (FeCo/GC) are promising multifunctional materials capable of highly efficient drug delivery in vitro and magnetic resonance imaging in vivo. In this work, we demonstrate the use of FeCo/GC for highly effective cancer therapy through combined drug delivery, tumor-selective near-infrared photothermal therapy, and cancer imaging of a 4T1 syngeneic breast cancer model. The graphitic carbon shell of the ∼4 nm FeCo/GC readily loads doxorubicin (DOX) via π-π stacking and absorbs near-infrared light giving photothermal heating. When used for cancer treatment, intravenously administrated FeCo/GC-DOX led to complete tumor regression in 45% of mice when combined with 20 min of near-infrared laser irradiation selectively heating the tumor to 43–45 °C. In addition, the use of FeCo/GC-DOX results in reduced systemic toxicity compared with free DOX and appears to be safe in mice monitored for over 1 yr. FeCo/GC-DOX is shown to be a highly integrated nanoparticle system for synergistic cancer therapy leading to tumor regression of a highly aggressive tumor model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dewhirst, M. W. Future directions in hyperthermia biology. Int. J. Hyperthermia 1994, 10, 339–345.

    Article  CAS  Google Scholar 

  2. Falk, M. H.; Issels, R. D. Hyperthermia in oncology. Int. J. Hyperthermia 2001, 17, 1–18.

    Article  CAS  Google Scholar 

  3. Hahn, G. M.; Braun, J.; Harkedar, I. Thermochemotherapy: Synergism between hyperthermia (42–43°C) and adriamycin (or bleomycin) in mammalian cell inactivation. Proc. Natl. Acad. Sci. U. S. A. 1975, 72, 937–940.

    Article  CAS  Google Scholar 

  4. Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematolo 2002, 43, 33–56.

    Article  Google Scholar 

  5. Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P. M. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002, 3, 487–497.

    Article  CAS  Google Scholar 

  6. Vertrees, R. A.; Jordan, J. M.; Zwischenberger, J. B. Hyperthermia and chemotherapy: The science. In Current Clinical Oncology: Intraperitoneal Cancer Therapy, Helm, C. W.; Edwards, R. P., Eds.; Humana Press Inc.: Totowa, NJ, 2007; pp 71–100.

    Chapter  Google Scholar 

  7. Helm, C. W.; Edwards, R. P. Current Clinical Oncology: Intraperitoneal Cancer Therapy; Humana Press Inc.: Totowa, NJ, 2007.

    Book  Google Scholar 

  8. Hildebrandt, B.; Wust, P. The biologic rationale of hyperthermia. Cancer Treat. Res. 2007, 134, 171–184.

    CAS  Google Scholar 

  9. Purushotham, S.; Chang, P. E. J.; Rumpel, H.; Kee, I. H. C.; Ng, R. T. H.; Chow, P. K. H.; Tan, C. K.; Ramanujan, R. V. Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy. Nanotechnology 2009, 20, 305101.

    Article  CAS  Google Scholar 

  10. Power, S.; Slattery, M. M.; Lee, M. J. Nanotechnology and its relationship to interventional radiology. Part II: Drug delivery, thermotherapy, and vascular intervention. Cardiovasc. Intervent. Radiol. 2011, 34, 676–690.

    Article  Google Scholar 

  11. Park, J. H.; von Maltzahn, G.; Ong, L. L.; Centrone, A.; Hatton, T. A.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Cooperative nanoparticles for tumor detection and photo-thermally triggered drug delivery. Adv. Mater. 2010, 22, 880–885.

    Article  CAS  Google Scholar 

  12. Park, J. H.; von Maltzahn, G.; Xu, M. J.; Fogal, V.; Kotamraju, V. R.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 981–986.

    Article  CAS  Google Scholar 

  13. Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H.; Luong, R.; Dai, H. J. High performance in vivo near-IR (> 1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 2010, 3, 779–793.

    Article  CAS  Google Scholar 

  14. Lee, S. M.; Park, H.; Yoo, K. H. Synergistic cancer therapeutic effects of locally delivered drug and heat using multifunctional nanoparticles. Adv. Mater. 2010, 22, 4049–4053.

    Article  CAS  Google Scholar 

  15. Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I. H.; Yoo, K. H. Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 2009, 3, 2919–2926.

    Article  CAS  Google Scholar 

  16. Park, H.; Yang, J.; Seo, S.; Kim, K.; Suh, J.; Kim, D.; Haam, S.; Yoo, K. H. Multifunctional nanoparticles for photo-thermally controlled drug delivery and magnetic resonance imaging enhancement. Small 2008, 4, 192–196.

    Article  CAS  Google Scholar 

  17. Lee, J. H.; Sherlock, S. P.; Terashima, M.; Kosuge, H.; Suzuki, Y.; Goodwin, A.; Robinson, J.; Seo, W. S.; Liu, Z.; Luong, R. et al. High-contrast in vivo visualization of microvessels using novel FeCo/GC magnetic nanocrystals. Magn. Reson. Med. 2009, 62, 1497–1509.

    Article  Google Scholar 

  18. Seo, W. S.; Lee, J. H.; Sun, X. M.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P. C.; McConnell, M. V.; Nishimura, D. G. et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 2006, 5, 971–976.

    Article  CAS  Google Scholar 

  19. Sherlock, S. P.; Tabakman, S. M.; Xie, L. M.; Dai, H. J. Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals. ACS Nano 2011, 5, 1505–1512.

    Article  CAS  Google Scholar 

  20. Bausero, M. A.; Page, D. T.; Osinaga, E.; Asea, A. Surface expression of Hsp25 and Hsp72 differentially regulates tumor growth and metastasis. Tumor Biol. 2004, 25, 243–251.

    Article  CAS  Google Scholar 

  21. Working, P. K.; Dayan, A. D. Pharmacological-toxicological expert report: CAELYX. (Stealth liposomal doxorubicin HCl). Hum. Exp. Toxicol. 1996, 15, 751–785.

    CAS  Google Scholar 

  22. Seymour, L. W.; Ulbrich, K.; Strohalm, J.; Kopecek, J.; Duncan, R. The pharmacokinetics of polymer-bound adriamycin. Biochem. Pharmacol. 1990, 39, 1125–1131.

    Article  CAS  Google Scholar 

  23. Liu, D. L.; Andersson-Engels, S.; Sturesson, C.; Svanberg, K.; Hakansson, C. H.; Svanberg, S. Tumour vessel damage resulting from laser-induced hyperthermia alone and in combination with photodynamic therapy. Cancer Lett. 1997, 111, 157–165.

    Article  CAS  Google Scholar 

  24. Liu, P.; Zhang, A.; Xu, Y.; Xu, L. X. Study of non-uniform nanoparticle liposome extravasation in tumour. Int. J. Hyperthermia 2005, 21, 259–270.

    Article  CAS  Google Scholar 

  25. Lu, D.; Wientjes, M. G.; Lu, Z.; Au, J. L. Tumor priming enhances delivery and efficacy of nanomedicines. J. Pharmacol. Exp. Ther. 2007, 322, 80–88.

    Article  CAS  Google Scholar 

  26. Kosuge, H.; Sherlock, S. P.; Kitagawa, T.; Terashima, M.; Barral, J. K.; Nishimura, D. G.; Dai, H. J.; McConnell, M. V. FeCo/graphite nanocrystals for multi-modality imaging of experimental vascular inflammation. PLoS One 2011, 6, e14523.

    Article  CAS  Google Scholar 

  27. Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q. Z.; Chen, X. Y.; Dai, H. J. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008, 68, 6652–6660.

    Article  CAS  Google Scholar 

  28. Liu, Z.; Fan, A. C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X. Y.; Yang, Q. W.; Felsher, D. W.; Dai, H. J. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed. 2009, 48, 7668–7672.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Dai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherlock, S.P., Dai, H. Multifunctional FeCo-graphitic carbon nanocrystals for combined imaging, drug delivery and tumor-specific photothermal therapy in mice. Nano Res. 4, 1248–1260 (2011). https://doi.org/10.1007/s12274-011-0176-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0176-z

Keywords

Navigation