Skip to main content
Log in

Chemical versus thermal folding of graphene edges

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Using molecular dynamics (MD) simulations, we have investigated the kinetics of the graphene edge folding process. The lower limit of the energy barrier is found to be ∼380 meV/Å (or about 800 meV per edge atom) and ∼50 meV/Å (or about 120 meV per edge atom) for folding the edges of intrinsic clean single-layer graphene (SLG) and double-layer graphene (DLG), respectively. However, the edge folding barriers can be substantially reduced by imbalanced chemical adsorption, such as of H atoms, on the two sides of graphene along the edges. Our studies indicate that thermal folding is not feasible at room temperature (RT) for clean SLG and DLG edges and is feasible at high temperature only for DLG edges, whereas chemical folding (with adsorbates) of both SLG and DLG edges can be spontaneous at RT. These findings suggest that the folded edge structures of suspended graphene observed in some experiments are possibly due to the presence of adsorbates at the edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan, Q.; Huang, B.; Yu, J.; Zheng, F.; Zang, J.; Wu, J.; Gu, B.; Liu, F.; Duan, W. Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett. 2007, 7, 1469–1473.

    Article  CAS  Google Scholar 

  2. Fasolino, A.; Los, J. H.; Katsnelson, M. I. Intrinsic ripples in graphene. Nat. Mater. 2007, 6, 858–861.

    Article  CAS  Google Scholar 

  3. Huang, B.; Liu, F.; Wu, J.; Gu, B.; Duan, W. Suppression of spin polarization in graphene nanoribbons by edge defects and impurities. Phys. Rev. B 2008, 77, 153411.

    Article  Google Scholar 

  4. Shenoy, V. B.; Reddy, C. D.; Ramasubramaniam, A.; Zhang, Y. W. Edge-stress-induced warping of graphene sheets and nanoribbons. Phys. Rev. Lett. 2008, 101, 245501.

    Article  CAS  Google Scholar 

  5. Bets, K. V.; Yokobson, B. I. Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons. Nano Res. 2009, 2, 161–166.

    Article  CAS  Google Scholar 

  6. Huang, B.; Liu, M.; Su, N.; Wu, J.; Duan, W.; Gu, B.; Liu, F. Quantum manifestations of graphene edge stress and edge instability: A first-principles study. Phys. Rev. Lett. 2009, 102, 166404.

    Article  Google Scholar 

  7. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.

    Article  CAS  Google Scholar 

  8. Gass, M. H.; Bangert, U.; Bleloch, A. L.; Wang, P.; Nair, R. R. Free-standing graphene at atomic resolution. Nat. Nanotechnol. 2008, 3, 676–681.

    Article  CAS  Google Scholar 

  9. Liu, Z.; Suenage, K.; Harris, P. J. F.; Iijima, S. Open and closed edges of graphene layers. Phys. Rev. Lett. 2009, 102, 015501.

    Article  Google Scholar 

  10. Huang, J. Y.; Ding, F.; Yakobson, B. I.; Lu, P.; Qi, L.; Li, J. In situ observation of graphene sublimation and multi-layer edge reconstructions. P. Natl. Acad. Sci. U.S.A. 2009, 106, 10103–10108.

    Article  CAS  Google Scholar 

  11. Yu, W. J.; Chae, S. H.; Perello, D.; Lee, S. Y.; Han, G. H.; Yun, M.; Lee, Y. H. Synthesis of edge-closed graphene ribbons with enhanced conductivity. ACS Nano 2010, 4, 5480–5486.

    Article  CAS  Google Scholar 

  12. Cranford, S.; Sen, D.; Buehler, M. J. Meso-origami: Folding multilayer graphene sheets. Appl. Phys. Lett. 2009, 95, 123121.

    Article  Google Scholar 

  13. Cruz-Silva, E.; Botello-Méndez, A. R.; Barnett, Z. M.; Jia, X.; Dresselhaus, M. S.; Terrones, H.; Terrones, M.; Sumpter, B. G.; Meunier, V. Controlling edge morphology in graphene layers using electron irradiation: From sharp atomic edges to coalesced layers forming loops. Phys. Rev. Lett. 2010, 105, 045501.

    Google Scholar 

  14. Yu, D.; Liu, F. Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption. Nano Lett. 2007, 7, 3046–3050.

    Article  CAS  Google Scholar 

  15. Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Ni, B.; Sinnott, S. B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.-Condens. Mat. 2002, 14, 783–802.

    Article  CAS  Google Scholar 

  16. Girifalco, L. A.; Lad, R. A. Energy of cohesion, compressibility, and the potential energy functions of the graphite system. J. Chem. Phys. 1956, 25, 693–697.

    Article  CAS  Google Scholar 

  17. Zecho, T.; Guttler, A.; Sha, X. W.; Jackson, B.; Kuppers, J. Adsorption of hydrogen and deuterium atoms on the (0001) graphite surface. J. Chem. Phys. 2002, 117, 8486–8492.

    Article  CAS  Google Scholar 

  18. Xie, X.; Ju, L.; Feng, X.; Sun, Y.; Zhou, R.; Liu, K.; Fan, S.; Li, Q.; Jiang, K. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett. 2009, 9, 2565–2570.

    Article  CAS  Google Scholar 

  19. Sidorov, A.; Mudd, D.; Sumanasekera, G.; Ouseph, P. J.; Jayanthi, C. S.; Wu, S. Y. Electrostatic deposition of graphene in a gaseous environment: A deterministic route for synthe-sizing rolled graphenes. Nanotechnology 2009, 20, 055611.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu.

Electronic supplementary material

Supplementary material, approximately 152 KB.

Supplementary material, approximately 5.67 MB.

Supplementary material, approximately 2.79 MB.

Supplementary material, approximately 3.01 MB.

Supplementary material, approximately 2.46 MB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, N., Liu, M. & Liu, F. Chemical versus thermal folding of graphene edges. Nano Res. 4, 1242–1247 (2011). https://doi.org/10.1007/s12274-011-0175-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0175-0

Keywords

Navigation