Skip to main content
Log in

One-step synthesis of magnetically recyclable Au/Co/Fe triple-layered core-shell nanoparticles as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Magnetically recyclable Au/Co/Fe core-shell nanoparticles (NPs) have been successfully synthesized via a one-step in situ procedure. Transmission electron microscope (TEM), energy dispersive X-ray spectroscopic (EDS), and electron energy-loss spectroscopic (EELS) measurements revealed that the trimetallic Au/Co/Fe NPs have a triple-layered core-shell structure composed of a Au core, a Co-rich inter-layer, and a Fe-rich shell. The Au/Co/Fe core-shell NPs exhibit much higher catalytic activities for hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB) than the monometallic (Au, Co, Fe) or bimetallic (AuCo, AuFe, CoFe) counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Toshima, N.; Harada, M.; Yonezawa, T.; Kushihashi, K.; Asakura, K. Structural analysis of polymer-protected Pd/Pt bimetallic clusters as dispersed catalysts by using extended X-ray absorption fine structure spectroscopy. J. Phys. Chem. 1991, 95, 7448–7453.

    Article  CAS  Google Scholar 

  2. Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

    Article  CAS  Google Scholar 

  3. Toshima, N.; Kanemaru, M.; Shiraishi, Y.; Koga, Y. Spontaneous formation of core/shell bimetallic nanoparticles: A calorimetric study. J. Phys. Chem. B 2005, 109, 16326–16331.

    Article  CAS  Google Scholar 

  4. Wilson, O. M.; Scott, R. W. J.; Garcia-Martinez, J. C.; Crooks, R. M. Synthesis, characterization, and structure-selective extraction of 1-3-nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles. J. Am. Chem. Soc. 2005, 127, 1015–1024.

    Article  CAS  Google Scholar 

  5. Tao, F.; Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Renzas, J. R.; Liu, Z.; Chung, J. Y.; Mun, B. S.; Salmeron, M.; Somorjai, G. A. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 2008, 322, 932–934.

    Article  CAS  Google Scholar 

  6. Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 2008, 7, 333–338.

    Article  CAS  Google Scholar 

  7. Yang, J.; Sargent, E. H.; Kelley, S. O.; Ying, J. Y. A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis. Nat. Mater. 2009, 8, 683–689.

    Article  CAS  Google Scholar 

  8. Lee, Y. W.; Kim, M.; Kim, Z. H.; Han, S. W. One-step synthesis of Au@Pd core-shell nanooctahedron. J. Am. Chem. Soc. 2009, 131, 17036–17037.

    Article  CAS  Google Scholar 

  9. Kobayashi, H.; Yamauchi, M.; Kitagawa, H.; Kubota, Y.; Kato, K.; Takata, M. Atomic-level Pd-Pt alloying and largely enhanced hydrogen-storage capacity in bimetallic nanoparticles reconstructed from core/shell structure by a process of hydrogen absorption/desorption. J. Am. Chem. Soc. 2010, 132, 5576–5577.

    Article  CAS  Google Scholar 

  10. Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845–910.

    Article  CAS  Google Scholar 

  11. Zhang, Z. Y.; Nenoff, T. M.; Leung, K.; Ferreira, S. R.; Huang, J. Y.; Berry, D. T.; Provencio, P. P.; Stumpft, R. Room-temperature synthesis of Ag-Ni and Pd-Ni alloy nanoparticles. J. Phys. Chem. C 2010, 114, 14309–14318.

    CAS  Google Scholar 

  12. Jiang, H. L.; Umegaki, T.; Akita, T.; Zhang, X. B.; Haruta, M.; Xu, Q. Bimetallic Au-Ni nanoparticles embedded in SiO2 nanospheres: Synergetic catalysis in hydrolytic dehydrogenation of ammonia borane. Chem. Eur. J. 2010, 16, 3132–3137.

    Article  CAS  Google Scholar 

  13. Wang, D. S.; Li, Y. D. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280–6281.

    Article  CAS  Google Scholar 

  14. Jiang, H. L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J. Am. Chem. Soc. 2011, 133, 1304–1306.

    Article  CAS  Google Scholar 

  15. Yan, J. M.; Zhang, X. B.; Han, S.; Shioyama, H.; Xu, Q. Magnetically recyclable Fe-Ni alloy catalyzed dehydrogenation of ammonia borane in aqueous solution under ambient atmosphere. J. Power Sources 2009, 194, 478–481.

    Article  CAS  Google Scholar 

  16. Yan, J. M.; Zhang, X. B.; Akita, T.; Haruta, M.; Xu, Q. One-step seeding growth of magnetically recyclable Au@Co core-shell nanoparticles: Highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2010, 132, 5326–5327.

    Article  CAS  Google Scholar 

  17. Mazumder, V.; Chi, M. F.; More, K. L.; Sun, S. H. Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 2010, 132, 7848–7849.

    Article  CAS  Google Scholar 

  18. Toshima, N.; Ito, R.; Matsushita, T.; Shiraishi, Y. Trimetallic nanoparticles having a Au-core structure. Catal. Today 2007, 122, 239–244.

    Article  CAS  Google Scholar 

  19. Mazumder, V.; Chi, M. F.; More, K. L.; Sun, S. H. Synthesis and characterization of multimetallic Pd/Au and Pd/Au/FePt core/shell nanoparticles. Angew. Chem. Int. Ed. 2010, 49, 9368–9372.

    Article  CAS  Google Scholar 

  20. Wang, L.; Yamauchi, Y. Autoprogrammed synthesis of triple-layered Au@Pd@Pt core-shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt Shell. J. Am. Chem. Soc. 2010, 132, 13636–13638.

    Article  CAS  Google Scholar 

  21. Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 2004, 93, 156801.

    Article  CAS  Google Scholar 

  22. Hamilton, C. W.; Baker, R. T.; Staubitz, A.; Manners, I. B-N compounds for chemical hydrogen storage. Chem. Soc. Rev. 2009, 38, 279–293.

    Article  CAS  Google Scholar 

  23. Gutowska, A.; Li, L. Y.; Shin, Y. S.; Wang, C. M. M.; Li, X. H. S.; Linehan, J. C.; Smith, R. S.; Kay, B. D.; Schmid, B.; Shaw, W.; Gutowski, M.; Autrey, T. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew. Chem. Int. Ed. 2005, 44, 3578–3582.

    Article  CAS  Google Scholar 

  24. Bluhm, M. E.; Bradley, M. G.; Butterick, R.; Kusari, U.; Sneddon, L. G. Amineborane-based chemical hydrogen storage: Enhanced ammonia borane dehydrogenation in ionic liquids. J. Am. Chem. Soc. 2006, 128, 7748–7749.

    Article  CAS  Google Scholar 

  25. Diyabalanage, H. V. K.; Shrestha, R. P.; Semelsberger, T. A.; Scott, B. L.; Bowden, M. E.; Davis, B. L.; Burrell, A. K. Calcium amidotrihydroborate: A hydrogen storage material. Angew. Chem. Int. Ed. 2007, 46, 8995–8997.

    Article  Google Scholar 

  26. Xiong, Z. T.; Yong, C. K.; Wu, G. T.; Chen, P.; Shaw, W.; Karkamkar, A.; Autrey, T.; Jones, M. O.; Johnson, S. R.; Edwards, P. P.; David, W. I. F. High-capacity hydrogen storage in lithium and sodium amidoboranes. Nat. Mater. 2008, 7, 138–141.

    Article  CAS  Google Scholar 

  27. Chandra, M.; Xu, Q. A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia-borane. J. Power Sources 2006, 156, 190–194.

    Article  CAS  Google Scholar 

  28. Xu, Q.; Chandra, M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature. J. Power Sources 2006, 163, 364–370.

    Article  CAS  Google Scholar 

  29. Xu, Q.; Chandra, M. A portable hydrogen generation system: Catalytic hydrolysis of ammonia-borane. J. Alloys. Compd. 2007, 446, 729–732.

    Article  Google Scholar 

  30. Yan, J. M.; Zhang, X. B.; Han, S.; Shioyama, H.; Xu, Q. Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Angew. Chem. Int. Ed. 2008, 47, 2287–2289.

    Article  CAS  Google Scholar 

  31. Umegaki, T.; Yan, J. M.; Zhang, X. B.; Shioyama, H.; Kuriyama, N.; Xu, Q. Boron- and nitrogen-based chemical hydrogen storage materials. Int. J. Hydrogen Energy 2009, 34, 2303–2311.

    Article  CAS  Google Scholar 

  32. Jiang, H. L.; Singh, S. K.; Yan, J. M.; Zhang, X. B.; Xu, Q. Liquid-phase chemical hydrogen storage: Catalytic hydrogen generation under ambient conditions. ChemSusChem 2010, 3, 541–549.

    Article  CAS  Google Scholar 

  33. Metin, Ö.; Mazumder, V.; Özkar, S.; Sun, S. S. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2010, 132, 1468–1469.

    Article  CAS  Google Scholar 

  34. Çalişkan, S.; Zahmakiran, M.; Özkar, S. Zeolite confined rhodium(0) nanoclusters as highly active, reusable, and long-lived catalyst in the methanolysis of ammonia-borane. Appl. Catal. B-Environ. 2010, 93, 387–394.

    Article  Google Scholar 

  35. Demirci, U. B.; Miele, P. Hydrolysis of solid ammonia borane. J. Power Sources 2010, 195, 4030–4035.

    Article  CAS  Google Scholar 

  36. Jiang, H. L.; Xu, Q. Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal. Today 2011, 170, 56–63.

    Article  CAS  Google Scholar 

  37. Denney, M. C.; Pons, V.; Hebden, T. J.; Heinekey, D. M.; Goldberg, K. I. Efficient catalysis of ammonia borane dehydrogenation. J. Am. Chem. Soc. 2006, 128, 12048–12049.

    Article  CAS  Google Scholar 

  38. Keaton, R. J.; Blacquiere, J. M.; Baker, R. T. Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage. J. Am. Chem. Soc. 2007, 129, 1844–1845.

    Article  CAS  Google Scholar 

  39. Stephens, F. H.; Pons, V.; Baker, R. T. Ammonia-borane: The hydrogen source par excellence? Dalton Trans. 2007, 2613–2626.

  40. Yao, C. F.; Zhuang, L.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Hydrogen release from hydrolysis of borazane on Pt- and Ni-based alloy catalysts. Int. J. Hydrogen Energy 2008, 33, 2462–2467.

    Article  CAS  Google Scholar 

  41. Kalidindi, S. B.; Sanyal, U.; Jagirdar, B. R. Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia-borane. Phys. Chem. Chem. Phys. 2008, 10, 5870–5874.

    Article  CAS  Google Scholar 

  42. Umegaki, T.; Yan, J. M.; Zhang, X. B.; Shioyama, H.; Kuriyama, N.; Xu, Q. Hollow Ni-SiO2 nanosphere-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. J. Power Sources 2009, 191, 209–216.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aranishi, K., Jiang, HL., Akita, T. et al. One-step synthesis of magnetically recyclable Au/Co/Fe triple-layered core-shell nanoparticles as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane. Nano Res. 4, 1233–1241 (2011). https://doi.org/10.1007/s12274-011-0174-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0174-1

Keywords

Navigation