Skip to main content
Log in

CuI-Si heterojunction solar cells with carbon nanotube films as flexible top-contact electrodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report the fabrication of CuI-Si heterojunction solar cells with carbon nanotubes (CNTs) as a transparent electrode. A flexible CNT network was transferred onto the top of a polycrystalline CuI layer, making a conformal coating with good contact with the underlying CuI. The solar cells showed power conversion efficiencies in the range of 6% to 10.5%, while the efficiency degradation was less than 10% after the device was stored in air for 8 days. Compared with conventional rigid electrodes such as indium tin oxide (ITO) glass, the flexibility of the CNT films ensures better contact with the active layers and removes the need for press-contact electrodes. Degraded cells can recover their original performance by acid doping of the CNT electrode. Our results suggest that CNT films are suitable electrical contacts for rough materials and structures with an uneven surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Granqvist, C. G. Transparent conductive electrodes for electrochromic devices—a review. Appl. Phys. A-Mater. Sci. Process. 1993, 57, 19–24.

    Article  Google Scholar 

  2. Ito, S.; Takeuchi, T.; Katayama, T.; Sugiyama, M.; Matsuda, M.; Kitamura, T.; Wada, Y.; Yanagida, S. Conductive and transparent multilayer films for low-temperature-sintered mesoporous TiO2 electrodes of dye-sensitized solar cells. Chem. Mater. 2003, 15, 2824–2828.

    Article  CAS  Google Scholar 

  3. Lewis, N. S. Toward cost-effective solar energy use. Science 2007, 315, 798–801.

    Article  CAS  Google Scholar 

  4. Catrysse, P. B.; Fan, S. H. Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices. Nano Lett. 2010, 10, 2944–2949.

    Article  CAS  Google Scholar 

  5. Pasquier, A. D.; Unalan, H. E.; Kanwal, A.; Miller, S.; Chhowalla, M. Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl. Phys. Lett. 2005, 87, 203511.

    Article  Google Scholar 

  6. van de Lagemaat, J.; Barnes, T. M.; Rumbles, G.; Shaheen, S. E.; Coutts, T. J.; Weeks, C.; Levitsky, I.; Peltola, J.; Glatkowski, P. Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode. Appl. Phys. Lett. 2006, 88, 233503.

    Article  Google Scholar 

  7. Wu, K. B.; Ji, X. B.; Fei, J. J.; Hu, S. S. The fabrication of a carbon nanotube film on a glassy carbon electrode and its application to determining thyroxine. Nanotechnology 2004, 15, 287–291.

    Article  CAS  Google Scholar 

  8. Geng, J. X.; Zeng, T. Y. Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices. J. Am. Chem. Soc. 2006, 128, 16827–16833.

    Article  CAS  Google Scholar 

  9. Rowell, M. W.; Topinka, M. A.; McGehee, M. D.; Prall, H. J.; Dennler, G.; Sariciftci, N. S.; Hu, L. B.; Gruner, G. Organic solar cells with carbon nanotube network electrodes. Appl. Phys. Lett. 2006, 88, 233506.

    Article  Google Scholar 

  10. Wei, J. Q.; Jia, Y.; Shu, Q. K.; Gu, Z. Y.; Wang, K. L.; Zhuang, D. M.; Zhang, G.; Wang, Z. C.; Luo, J. B.; Cao, A. Y.; Wu, D. H. Double-walled carbon nanotube solar cells. Nano Lett. 2007, 7, 2317–2321.

    Article  CAS  Google Scholar 

  11. Jia, Y.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Shu, Q. K.; Gui, X. C.; Zhu, Y. Q.; Zhuang, D. M.; Zhang, G.; Ma, B. B.; Wang, L. D.; Liu, W. J.; Wang, Z. C.; Luo, J. B.; Wu, D. Nanotube-silicon heterojunction solar cells. Adv. Mater. 2008, 20, 4594–4598.

    Article  CAS  Google Scholar 

  12. Landi, B. J.; Raffaelle, R. P.; Castro, S. L.; Bailey, S. G. Single-wall carbon nanotube-polymer solar cells. Prog. Photovoltaics 2005, 13, 165–172.

    Article  CAS  Google Scholar 

  13. Liang, C. W.; Roth, S. Electrical and optical transport of GaAs/carbon nanotube heterojunctions. Nano Lett. 2008, 8, 1809–1812.

    Article  CAS  Google Scholar 

  14. Wei, D. C.; Liu, Y. Q.; Cao, L. C.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis and photoelectric properties of coaxial Schottky junctions of ZnS and carbon nanotubes. Chem. Mater. 2010, 22, 288–293.

    Article  CAS  Google Scholar 

  15. Zhang, L. H.; Jia, Y.; Wang, S. S.; Li, Z.; Ji, C. Y.; Wei, J. Q.; Zhu, H. W.; Wang, K. L.; Wu, D. H.; Shi, E. Z.; Fang, Y.; Cao, A. Y. Carbon nanotube and CdSe nanobelt Schottky junction solar cells. Nano Lett. 2010, 10, 3583–3589.

    Article  CAS  Google Scholar 

  16. Xia, X. Y.; Wang, S. S.; Jia, Y.; Bian, Z. Q.; Wu, D. H.; Zhang, L. H.; Cao, A. Y.; Huang, C. H. Infrared-transparent polymer solar cells. J. Mater. Chem. 2010, 20, 8478–8482.

    Article  CAS  Google Scholar 

  17. Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Semitransparent organic photovoltaic cells with laminated top electrode. Nano Lett. 2010, 10, 1276–1279.

    Article  CAS  Google Scholar 

  18. Karlsson, P. G.; Bolik, S.; Richter, J. H.; Mahrov, B.; Johansson, E.; Blomquist, J.; Uvdal, P.; Rensmo, H.; Siegbahn, H.; Sandell, A. Interfacial properties of the nanostructured dye-sensitized solid heterojunction TiO2/RuL2(NCS)2/CuI. J. Chem. Phys. 2004, 120, 11224–11232.

    Article  CAS  Google Scholar 

  19. Cheng, C. H.; Wang, J.; Du, G. T.; Shi, S. H.; Du, Z. J.; Fan, Z. Q.; Bian, J. M.; Wang, M. S. Organic solar cells with remarkable enhanced efficiency by using a CuI buffer to control the molecular orientation and modify the anode. Appl. Phys. Lett. 2010, 97, 083305.

    Article  Google Scholar 

  20. Iimori, H.; Yamane, S.; Kitamura, T.; Murakoshi, K.; Imanishi, A.; Nakato, Y. High photovoltage generation at minority-carrier controlled n-Si/p-CuI heterojunction with morphologically soft CuI. J. Phys. Chem. C 2008, 112, 11586–11590.

    Article  CAS  Google Scholar 

  21. Li, Z.; Jia, Y.; Wei, J. Q.; Wang, K. L.; Shu, Q. K.; Gui, X. C.; Zhu, H. W.; Cao, A. Y.; Wu, D. H. Large area, highly transparent carbon nanotube spiderwebs for energy harvesting. J. Mater. Chem. 2010, 20, 7236–7240.

    Article  CAS  Google Scholar 

  22. Shin, D. W.; Lee, J. H.; Kim, Y. H.; Yu, S. M.; Park, S. Y.; Yoo, J. B. A role of HNO3 on transparent conducting film with single-walled carbon nanotubes. Nanotechnology 2009, 20, 475703.

    Article  Google Scholar 

  23. Kaskela, A.; Nasibulin, A. G.; Timmermans, M. Y.; Aitchison, B.; Papadimitratos, A.; Tian, Y.; Zhu, Z.; Jiang, H.; Brown, D. P.; Zakhidov, A.; Kauppinen, E. I. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 2010, 10, 4349–4355.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anyuan Cao.

Additional information

These authors contributed equally to this work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P., Wang, S., Jia, Y. et al. CuI-Si heterojunction solar cells with carbon nanotube films as flexible top-contact electrodes. Nano Res. 4, 979–986 (2011). https://doi.org/10.1007/s12274-011-0154-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0154-5

Keywords

Navigation