Skip to main content
Log in

Magnetite/reduced graphene oxide nanocomposites: One step solvothermal synthesis and use as a novel platform for removal of dye pollutants

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A simple one step solvothermal strategy using non-toxic and cost-effective precursors has been developed to prepare magnetite/reduced graphene oxide (MRGO) nanocomposites for removal of dye pollutants. Taking advantage of the combined benefits of graphene and magnetic nanoparticles, these MRGO nanocomposites exhibit excellent removal efficiency (over 91% for rhodamine B and over 94% for malachite green) and rapid separation from aqueous solution by an external magnetic field. Interestingly, the performance of the MRGO composites is strongly dependent on both the loading of Fe3O4 and the pH value. In addition, the adsorption behavior of this new adsorbent fits well with the Freundlich isotherm and the pseudo-second-order kinetic model. In further applications, real samples—including industrial waste water and lake water—have been treated using the MRGO composites. All the results demonstrate that the MRGO composites are effective adsorbents for removal of dye pollutants and thus could provide a new platform for dye decontamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hunger, K. Industrial Dyes: Chemistry, Properties, Applications; Wiley-VCH: Weinheim, Germany, 2003.

    Google Scholar 

  2. Christie, R. M. Environmental Aspects of Textile Dyeing; Woodhead Publishing: Great Abington, Cambridge, 2007.

    Book  Google Scholar 

  3. Hai, F. I.; Yamamoto, K.; Fukushi, K. Hybrid treatment systems for dye wastewater. Crit. Rev. Environ. Sci. Technol. 2007, 37, 315–377.

    Article  CAS  Google Scholar 

  4. Husain, Q. Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit. Rev. Biotechnol. 2006, 26, 201–221.

    Article  CAS  Google Scholar 

  5. Horng, J. Y.; Huang, S. D. Phosphates, phosphites, and phosphides in environmental samples. Environ. Sci. Technol. 1993, 27, 1169–1174.

    Article  CAS  Google Scholar 

  6. Kuo, W. G. Decolorizing dye wastewater with Fenton’s reagent. Water Res. 1992, 26, 881–886.

    Article  CAS  Google Scholar 

  7. Sujoy, K. D.; Jayati, B.; Akhil, R. D.; Arun, K. G. Adsorption behavior of rhodamine B on Rhizopus oryzae biomass. Langmuir 2006, 22, 7265–7272.

    Article  Google Scholar 

  8. Legrini, O.; Oliveros, E.; Braun, A. M. Photochemical processes for water treatment. Chem. Rev. 1993, 93, 671–698.

    Article  CAS  Google Scholar 

  9. Mohanty, K.; Naidu, J. T.; Meikap, B. C.; Biswas, M. N. Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Ind. Eng. Chem. Res. 2006, 45, 5165–5171.

    Article  CAS  Google Scholar 

  10. Chen, W.; Lu, W.; Yao, Y.; Xu, M. Highly efficient decomposition of organic dyes by aqueous-fiber phase transfer and in situ catalytic oxidation using fiber-supported cobalt phthalocyanine. Environ. Sci. Technol. 2007, 41, 6240–6245.

    Article  CAS  Google Scholar 

  11. Pandit, P.; Basu, S. Removal of ionic dyes from water by solvent extraction using reverse micelles. Environ. Sci. Technol. 2004, 38, 2435–2442.

    Article  CAS  Google Scholar 

  12. Yunus, R. F.; Zheng, Y. M.; K. Nanayakkara, G. N.; Chen, J. P. Electrochemical removal of rhodamine 6G by using RuO2 coated Ti DSA. Ind. Eng. Chem. Res. 2009, 48, 7466–7473.

    Article  Google Scholar 

  13. Zhao, X. M.; Zhang, B. H.; Ai, K. L.; Zhang, G.; Cao, L. Y.; Liu, X. J.; Sun, H. M.; Wang, H. S.; Lu, L. H. Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy. J. Mater. Chem. 2009, 19, 5547–5553.

    Article  CAS  Google Scholar 

  14. Blackburn, R. S. Natural polysaccharides and their interactions with dye molecules: Applications in effluent treatment. Environ. Sci. Technol. 2004, 38, 4905–4909.

    Article  CAS  Google Scholar 

  15. Sun, Z.; Li, C.; Wu, D. Removal of methylene blue from aqueous solution by adsorption onto zeolite synthesized from coal fly ash and its thermal regeneration. J. Chem. Technol. Biotechnol. 2010, 85, 845–850.

    Article  CAS  Google Scholar 

  16. Asadullah, M.; Asaduzzaman, M.; Kabir, M. S.; Mostofa, M. G.; Miyazawa, T. Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution. J. Hazard. Mater. 2010, 174, 437–443.

    Article  CAS  Google Scholar 

  17. Wang, P.; Shi, Q.; Shi, Y.; Clark, K. K.; Stucky, G. D.; Keller, A. A. Magnetic permanently confined micelle arrays for treating hydrophobic organic compound contamination. J. Am. Chem. Soc. 2009, 131, 182–188.

    Article  CAS  Google Scholar 

  18. Sun, Z.; Wang, L.; Liu, P.; Wang, S.; Sun, B.; Jiang, D.; Xiao, F. Magnetically motive porous sphere composite and its excellent properties for the removal of pollutants in water by adsorption and desorption cycles. Adv. Mater. 2006, 18, 1968–1971.

    Article  CAS  Google Scholar 

  19. Bekiari, V.; Lianos, P. Ureasil gels as a highly efficient sorbent for water purification. Chem. Mater. 2006, 18, 4142–4146.

    Article  CAS  Google Scholar 

  20. Zhao, M.; Tang, Z.; Liu, P. Removal of methylene blue from aqueous solution with silica nano-sheets derived from vermiculite. J. Hazard. Mater. 2008, 158, 43–51.

    Article  CAS  Google Scholar 

  21. Seredych, M.; Bandosz, T. J. Removal of cationic and ionic dyes on industrial-municipal sludge based composite adsorbents. Ind. Eng. Chem. Res. 2007, 46, 1786–1793.

    Article  CAS  Google Scholar 

  22. Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.

    Article  CAS  Google Scholar 

  23. Cao, L. Y.; Liu, Y. L.; Zhang, B. H.; Lu, L. H. In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: Facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS Appl. Mater. Interfaces 2010, 2, 2339–2346.

    Article  CAS  Google Scholar 

  24. Ai, K. L.; Liu, Y. L.; Lu, L. H.; Cheng, X. L.; Huo, L. H. A novel strategy for making soluble graphene sheets cheaply by adopting an endogenous reducing agent. J. Mater. Chem., in press, DOI:10.1039/C0JM02865G.

  25. Su, Q.; Pang, S.; Alijani, V.; Li, C.; Feng, X.; Mullen, K. Composites of graphene with large aromatic molecules. Adv. Mater. 2009, 21, 3191–3195.

    Article  CAS  Google Scholar 

  26. Loh, K.; Bao, Q.; Ang, P. K.; Yang, J. The chemistry of graphene. J. Mater. Chem. 2010, 20, 2277–2289.

    Article  CAS  Google Scholar 

  27. Zacharia, R.; Ulbricht, H.; Hertel, T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 2004, 69, 155406.

    Article  Google Scholar 

  28. Wu, Z.; Wang, D.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 2010, 20, 3595–3602.

    Article  CAS  Google Scholar 

  29. Hu, J.; Zhong, L.; Song, W.; Wan, L. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv. Mater. 2008, 20, 2977–2982.

    Article  CAS  Google Scholar 

  30. Rocher, V.; Bee, A.; Siaugue, J. M.; Cabuil, V. Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin. J. Hazard. Mater. 2010, 178, 434–439.

    Article  CAS  Google Scholar 

  31. Zhai, Y. M.; Zhai, J. F.; Zhou, M.; Dong, S. J. Ordered magnetic core-manganese oxide shell nanostructures and their application in water treatment. J. Mater. Chem. 2009, 19, 7030–7035.

    Article  CAS  Google Scholar 

  32. Cong, H. P.; He, J. J.; Lu, Y.; Yu, S. H. Water-soluble magnetic-functionalized reduced graphene oxide sheets: In situ synthesis and magnetic resonance imaging applications. Small 2009, 6, 169–173.

    Article  Google Scholar 

  33. Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I.; Kim, K. S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 2010, 4, 3979–3986.

    Article  CAS  Google Scholar 

  34. Zhang, M.; Lei, D.; Yin, X.; Chen, L.; Li, Q.; Wang, Y.; Wang, T. Magnetite/graphene composites: Microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. J. Mater. Chem. 2010, 20, 5538–5543.

    Article  CAS  Google Scholar 

  35. Shen, J.; Hu, Y.; Shi, M.; Li, N.; Ma, H.; Ye, M. One step synthesis of graphene oxide-magnetic nanoparticle composite. J. Phys. Chem. C 2010, 114, 1498–1503.

    Article  CAS  Google Scholar 

  36. Liang, J.; Xu, Y.; Sui, D.; Zhang, L.; Huang, Y.; Ma, Y.; Li, F.; Chen, Y. Flexible, magnetic, and electrically conductive graphene/Fe3O4 paper and its application for magnetic-controlled switches. J. Phys. Chem. C 2010, 114, 17465–17471.

    Article  CAS  Google Scholar 

  37. Wang, H.; Robinson, J. T.; Li, X.; Dai, H. Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 2009, 131, 9910–9911.

    Article  CAS  Google Scholar 

  38. Dubin, S.; Gilje, S.; Wang, K.; Tung, V. C.; Cha, K.; Hall, A. S.; Farrar, J.; Varshneya, R.; Yang, Y.; Kaner, R. B. A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano, 2010, 4, 3845–3852.

    Article  CAS  Google Scholar 

  39. Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem., Int. Ed. 2005, 44, 2782–2785.

    Article  CAS  Google Scholar 

  40. Yang, X. Y.; Zhang, X. Y.; Ma, Y. F.; Huang, Y.; Wang, Y. S.; Chen, Y. S. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 2009, 19, 2710–2714.

    Article  CAS  Google Scholar 

  41. Xuan, S.; Wang, Y. J.; Yu, J. C.; Leung, K. C. Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem. Mater. 2009, 21, 5079–5087.

    Article  CAS  Google Scholar 

  42. Zhu, C.; Guo, S.; Fang, Y.; Dong, S. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano 2010, 4, 2429–2437.

    Article  CAS  Google Scholar 

  43. Lu, L. H.; Randjelovic, I.; Capek, R.; Gaponik, N.; Yang, J. H.; Zhang, H. J.; Eychmuller, A. Controlled fabrication of gold-coated 3D ordered colloidal crystal films and their application in surface-enhanced Raman spectroscopy. Chem. Mater. 2005, 17, 5731–5736.

    Article  CAS  Google Scholar 

  44. Lu, L. H.; Ai, K. L.; Ozaki, Y. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape. Langmuir 2008, 24, 1058–1063.

    Article  CAS  Google Scholar 

  45. Warren, B. E. X-ray Diffraction; Addison-Wesley: London, 1969.

    Google Scholar 

  46. Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3, 2653–2659.

    Article  CAS  Google Scholar 

  47. Ge, J.; Hu, Y.; Biasini, M.; Beyermann, W. P.; Yin, Y. Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem., Int. Ed. 2007, 46, 4342–4345.

    Article  CAS  Google Scholar 

  48. McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’homme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

    Article  CAS  Google Scholar 

  49. Yang, H. F.; Li, F. H.; Shan, C. S.; Han, D. X.; Zhang, Q. X.; Niu, L.; Ivaska, A. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J. Mater. Chem. 2009, 19, 4632–4638.

    Article  CAS  Google Scholar 

  50. Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009, 9, 1593–1597.

    Article  CAS  Google Scholar 

  51. Zhang, L.; Qiao, S. Z.; Jin, Y. G.; Chen, Z. G.; Gu, H. C.; Lu, G. Q. Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals: Fabrication and structure control. Adv. Mater. 2008, 20, 805–809.

    Article  Google Scholar 

  52. Liu, Y. L.; Ai, K. L.; Cheng, X. L.; Huo, L. H.; Lu, L. H. Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv. Funct. Mater. 2010, 20, 951–956.

    Article  CAS  Google Scholar 

  53. Hameed, B. H.; El-Khaiary, M. I. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies. J. Hazard. Mater. 2008, 154, 237–244.

    Article  CAS  Google Scholar 

  54. Ngah, W. S. W.; Ariff, N. F. M.; Hashim, A.; Hanaf, M. A. K. M. Malachite green adsorption onto chitosan coated bentonite beads: Isotherms, kinetics and mechanism. Clean—Soil, Air, Water 2010, 38, 394–400.

    Article  CAS  Google Scholar 

  55. Vijayakumar, G.; Yoo, C. K.; Elango, K. G. P.; Dharmendirakumar, M. Adsorption characteristics of rhodamine B from aqueous solution onto baryte. Clean—Soil, Air, Water 2010, 38, 202–209.

    Article  CAS  Google Scholar 

  56. Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403.

    Article  CAS  Google Scholar 

  57. Freundlich, H. M. F. Über die Adsorption in Lösungen. Z. Phys. Chem. 1906, 57A, 385–470.

    Google Scholar 

  58. Ai, K. L.; Liu, Y. L.; Lu, L. H. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J. Am. Chem. Soc. 2009, 131, 9496–9497.

    Article  CAS  Google Scholar 

  59. Zhang, B. H.; Wang, H. S.; Lu, L. H.; Ai, K. L.; Zhang, G.; Cheng, X. L. Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy. Adv. Funct. Mater. 2008, 18, 2348–2355.

    Article  CAS  Google Scholar 

  60. Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lehui Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Cao, L. & Lu, L. Magnetite/reduced graphene oxide nanocomposites: One step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res. 4, 550–562 (2011). https://doi.org/10.1007/s12274-011-0111-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0111-3

Keywords

Navigation