, Volume 4, Issue 3, pp 308-314
Date: 23 Dec 2010

Linear strain-gradient effect on the energy bandgap in bent CdS nanowires

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Although possible non-homogeneous strain effects in semiconductors have been investigated for over a half century and the strain-gradient can be over 1% per micrometer in flexible nanostructures, we still lack an understanding of their influence on energy bands. Here we conduct a systematic cathodoluminescence spectroscopy study of the strain-gradient induced exciton energy shift in elastically curved CdS nanowires at low temperature, and find that the red-shift of the exciton energy in the curved nanowires is proportional to the strain-gradient, an index of lattice distortion. Density functional calculations show the same trend of band gap reduction in curved nanostructures and reveal the underlying mechanism. The significant linear strain-gradient effect on the band gap of semiconductors should shed new light on ways to tune optical-electronic properties in nanoelectronics.