Skip to main content
Log in

Hybrid silicon-carbon nanostructured composites as superior anodes for lithium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We have successfully fabricated a hybrid silicon-carbon nanostructured composite with large area (about 25.5 in2) in a simple fashion using a conventional sputtering system. When used as the anode in lithium ion batteries, the uniformly deposited amorphous silicon (a-Si) works as the active material to store electrical energy, and the pre-coated carbon nanofibers (CNFs) serve as both the electron conducting pathway and a strain/stress relaxation layer for the sputtered a-Si layers during the intercalation process of lithium ions. As a result, the as-fabricated lithium ion batteries, with deposited a-Si thicknesses of 200 nm or 300 nm, not only exhibit a high specific capacity of >2000 mA·h/g, but also show a good capacity retention of over 80% and Coulombic efficiency of >98% after a large number of charge/discharge experiments. Our approach offers an efficient and scalable method to obtain silicon-carbon nanostructured composites for application in lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors. Chem. Rev. 2004, 104, 4245–4270.

    Article  CAS  Google Scholar 

  2. Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.

    Article  CAS  Google Scholar 

  3. Yoon, J.; Baca, A. J.; Park, S. -I.; Elvikis, P.; Geddes, J. B. III; Li, L.; Kim, R. H.; Xiao, J.; Wang, S.; Kim, T. -H.; Motala, M. J.; Ahn, B. Y.; Duoss, E. B.; Lewis, J. A.; Nuzzo, R. G.; Ferreira, P. M.; Huang, Y.; Rockett, A.; Rogers, J. A. Ultrathinsilicon solar microcells for semitransparent, mechanically flexible and microconcentratormoduledesigns. Nat. Mater. 2008, 7, 907–915.

    Article  CAS  Google Scholar 

  4. Armand, M.; Tarascon, J. -M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  Google Scholar 

  5. Boettcher, S. W.; Spurgeon, J. M.; Putnam, M. C.; Warren, E. L.; Turner-Evans, D. B.; Kelzenberg, M. D.; Maiolo J. R.; Awater, H. A.; Lewis, N. S. Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes. Science 2010, 327, 185–187.

    Article  CAS  Google Scholar 

  6. Long, J. W.; Dunn, B.; Rolison, D. R.; White, H. S. Threedimensional battery architectures. Chem. Rev. 2004, 104, 4463–4492.

    Article  CAS  Google Scholar 

  7. Liu, J.; Cao, G.; Yang, Z.; Wang, D.; Dubois, D.; Zhou, X.; Graff, G. L.; Pederson, L. R.; Zhang, J. -G. Oriented nanostructures for energy conversion and storage. ChemSusChem 2008, 1, 676–697.

    Article  CAS  Google Scholar 

  8. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  CAS  Google Scholar 

  9. Jiang, C.; Hosono, E.; Zhou, H. E. Nanomaterials for lithium ion batteries. Nano Today 2006, 1, 28–33.

    Article  Google Scholar 

  10. Poizot. P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, T. -M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    Article  CAS  Google Scholar 

  11. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, T. -M.; Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  CAS  Google Scholar 

  12. Chan, C. K.; Peng, H.; Liu, G.; Mcilwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  CAS  Google Scholar 

  13. Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844–3847.

    Article  CAS  Google Scholar 

  14. Song, T.; Xia, J.; Lee J. -H.; Lee, D. H.; Kwon, M. -S.; Choi, J. -M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I.; Zang, D. S.; Kim, H.; Huang, Y.; Hwang, K.-C.; Rogers, J. A.; Paik, U. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710–1716.

    Article  CAS  Google Scholar 

  15. Cho, J. Porous Si anode materials for lithium rechargeable batteries. J. Mater. Chem. 2010, 20, 4009–4014.

    Article  CAS  Google Scholar 

  16. Kim, H.; Han, B.; Choo J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 2008, 47, 10151–10154.

    Article  CAS  Google Scholar 

  17. Kim, H.; Cho, J. Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. Nano Lett. 2008, 8, 3688–3691

    Article  CAS  Google Scholar 

  18. Kim, H; Seo, M.; Park, M. -H.; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 2010, 49, 2146–2149.

    Article  CAS  Google Scholar 

  19. Cui, L. F.; Hu, L. B.; Choi, J. K.; Cui, Y. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS Nano 2010, 4, 3671–3678

    Article  CAS  Google Scholar 

  20. Choi, J. W.; Hu, L. B.; Cui, L. F.; McDonough, J. R.; Cui, Y. Metal current collector-free freestanding silicon-carbon 1D nanocomposites for ultralight anodes in lithium ion batteries. J. Power Sources 2010, 195, 8311–8316

    Article  CAS  Google Scholar 

  21. Zhou, S.; Liu, Z.; Wang, D. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries. Nano Lett. 2010, 10, 860–863.

    Article  CAS  Google Scholar 

  22. Cui, L. F.; Yang, Y.; Hsu, C. M.; Cui, Y. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 2009, 9, 3370–3374.

    Article  CAS  Google Scholar 

  23. Wang, L.; Ding, C. X.; Zhang, L. C.; Xu, H. W.; Zhang, D. W.; Cheng, T.; Chen, C. H. A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries. J. Power Sources 2010, 195, 5052–5056.

    Article  CAS  Google Scholar 

  24. Wang, W.; Kumta, P. N. Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano 2010, 4, 2233–2241.

    Article  CAS  Google Scholar 

  25. Luo, Z.; Fan, D.; Liu, X.; Mao, H.; Yao, C.; Deng, Z. High performance silicon carbon composite anode materials for lithium ion batteries. J. Power Sources 2009, 189, 16–21.

    Article  CAS  Google Scholar 

  26. Saint, J.; Morcrette, M.; Larcher, D.; Laffont, L.; Beattie, S.; Peres, J. -P.; Talaga, D.; Couzi, M.; Tarascon, J. -M. Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites. Adv. Funct. Mater. 2007, 17, 1765–1774.

    Article  CAS  Google Scholar 

  27. Cui, L. F.; Ruffo, R.; Chan, C. K.; Peng, H. L.; Cui, Y. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 2009, 9, 491–495.

    Article  CAS  Google Scholar 

  28. Baranchugov, V.; Markevich, E.; Pollak, E.; Salitra, G.; Aurbach, D. Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochem. Commun. 2007, 9, 796–800.

    Article  CAS  Google Scholar 

  29. Lee, K. -L.; Jung, J. -Y.; Lee, S. -W.; Moon, H. -S.; Park, J. -W. Electrochemical characteristics and cycle performance of LiMn2O4/a-Si microbattery. J. Power Sources 2004, 130, 241–261.

    Article  CAS  Google Scholar 

  30. Zaghib, K.; Tatsumi, K.; Abe, H.; Ohsaki, T.; Sawada, Y.; Higuchi, S. Optimization of the dimensions of vapor-grown carbon fiber for use as negative electrodes in lithium-ion rechargeable cells. J. Electrochem. Soc. 1998, 145, 210–215.

    Article  CAS  Google Scholar 

  31. Takamura, T.; Ohara, S.; Uehar, M.; Suzuki, J.; Sekine, K. A vacuum deposited Si film having a Li extraction capacity over 2000 mA·h/g with a long cycle life. J. Power Sources 2004, 129, 96–100.

    Article  CAS  Google Scholar 

  32. Ohara, S.; Suzuki, J.; Sekine, K.; Takamura, T. A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life. J. Power Sources 2004, 136, 303–306.

    Article  CAS  Google Scholar 

  33. Rong, J. P.; Masarapu, C.; Ni, J.; Zhang, Z. J.; Wei, B. Q. Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications. ACS Nano 2010, 4, 4683–4690.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongwu Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, PC., Xu, J., Chen, H. et al. Hybrid silicon-carbon nanostructured composites as superior anodes for lithium ion batteries. Nano Res. 4, 290–296 (2011). https://doi.org/10.1007/s12274-010-0081-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-010-0081-x

Keywords

Navigation